Formation of magnetic anionic electrons by hole doping
Abstract
Electrides intrinsically hold some unique properties arising from the anionic electrons such as the low work function from their loosely bound nature and extended distribution due to their absence of restriction from atomic orbitals. Leveraging these properties, via first-principles calculations, we firstly propose a new nonmagnetic semiconducting electrene ZrCl2 ([ZrCl2]2+·2e−), which is stable and can be easily exfoliated from its experimentally grown parent layered bulk. Moreover, a spontaneous spin splitting of the anionic electrons and consequently a nonmagnetic–magnetic phase transition are revealed in monolayer ZrCl2 at a critical doping concentration of 5.0 × 1014 cm−2. Assisted by the low-energy effective model, constrained random phase approximation simulation, and Anderson's theory, we demonstrate the mechanism of d0 magnetism in the doped monolayer ZrCl2 and confirm the dual localized and extended nature of these magnetic anionic electrons. These results enable electric-field controllable magnetism in electrenes, showing potential for novel spintronic applications.
- This article is part of the themed collection: 2023 Journal of Materials Chemistry C Lunar New Year collection