Issue 17, 2022

Nanostructured chromium-based broadband absorbers and emitters to realize thermally stable solar thermophotovoltaic systems

Abstract

The efficiency of traditional solar cells is constrained due to the Shockley–Queisser limit, to circumvent this theoretical limit, the concept of solar thermophotovoltaics (STPVs) has been introduced. The typical design of an STPV system consists of a wideband absorber with its front side facing the sun. The back of this absorber is physically attached to the back of a selective emitter facing a low-bandgap photovoltaic (PV) cell. We demonstrate an STPV system consisting of a wideband absorber and emitter pair achieving a high absorptance of solar radiation within the range of 400–1500 nm (covering the visible and infrared regions), whereas the emitter achieves an emittance of >95% at a wavelength of 2.3 μm. This wavelength corresponds to the bandgap energy of InGaAsSb (0.54 eV), which is the targeted PV cell technology for our STPV system design. The material used for both the absorber and the emitter is chromium due to its high melting temperature of 2200 K. An absorber and emitter pair is also fabricated and the measured results are in agreement with the simulated results. The design achieves an overall solar-to-electrical simulated efficiency of 21% at a moderate temperature of 1573 K with a solar concentration of 3000 suns. Furthermore, an efficiency of 15% can be achieved at a low temperature of 873 K with a solar concentration of 500 suns. The designs are also insensitive to polarization and show negligible degradation in solar absorptance and thermal emittance with a change in the angle of incidence.

Graphical abstract: Nanostructured chromium-based broadband absorbers and emitters to realize thermally stable solar thermophotovoltaic systems

Article information

Article type
Paper
Submitted
22 Ker. 2021
Accepted
27 Meur. 2022
First published
30 Meur. 2022

Nanoscale, 2022,14, 6425-6436

Nanostructured chromium-based broadband absorbers and emitters to realize thermally stable solar thermophotovoltaic systems

M. A. Abbas, J. Kim, A. S. Rana, I. Kim, B. Rehman, Z. Ahmad, Y. Massoud, J. Seong, T. Badloe, K. Park, M. Q. Mehmood, M. Zubair and J. Rho, Nanoscale, 2022, 14, 6425 DOI: 10.1039/D1NR08400C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements