Issue 45, 2020

Luminescent sensing of nitroaromatics by crystalline porous materials

Abstract

Porous crystalline materials (PCMs) constitute a class of covalent or supramolecular coordination architectures having intensive application in the fields of sensing, gas separation and storage, catalysis and optoelectronic device engineering. The theoretical investigations on these porous crystalline systems using multiple wave functions add fundamental insights into better understanding of highly selective sensing. A lot of recent reports focus on various archetypal luminescent porous organic frameworks, like metal organic frameworks (MOFs), covalent organic frameworks (COFs), or nanocomposites having excellent luminescence sensing performance against a plethora of nitroaromatic compounds and explosives. These exceptional classes of compounds display unique characteristic photochromism and electronic properties which can be tuned from the grass-root level by modifying metal–ligand interactions and various supramolecular interactions at the molecular level. Thus, developing luminescent porous organic frameworks having ultra-fast capacity of sensing nitroaromatic compounds and explosives reversibly with high selectivity and low limits of detection (LOD) is urgently required for national security, as well as homeland and environment safety. The reusability of these porous frameworks can only be anticipated if the crystallinity of these materials is retained after repeated use followed by construction of these frameworks with cheaper starting materials. The present review mainly encompasses the recent progress in various luminescent PCMs incorporating transition metals, lanthanides, nanocomposites, and main group elements having sensing technology applications along with the theoretical insights and possible mechanisms behind “turn-on” or “turn-off” luminescence.

Graphical abstract: Luminescent sensing of nitroaromatics by crystalline porous materials

Article information

Article type
Highlight
Submitted
28 Goue. 2020
Accepted
20 Here 2020
First published
21 Here 2020

CrystEngComm, 2020,22, 7736-7781

Luminescent sensing of nitroaromatics by crystalline porous materials

A. Dutta, A. Singh, X. Wang, A. Kumar and J. Liu, CrystEngComm, 2020, 22, 7736 DOI: 10.1039/D0CE01087A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements