Structure-directing role of immobilized polyoxometalates in the synthesis of porphyrinic Zr-based metal–organic frameworks†
Abstract
We evidence the structure-directing role of the PW12O403− polyoxometalate in porphyrinic MOF synthesis whereby it promotes the formation of the kinetic topology. Its immobilization into the MOF is successfully achieved at a high temperature yielding the kinetic MOF-525/PCN-224 phases, while prohibiting the formation of the thermodynamic MOF-545 product. A combined experimental/theoretical approach uses differential PDF and DFT calculations along with solid-state NMR to show the structural integrity of the POM and its location next to the Zr-based nodes.
- This article is part of the themed collection: Functional Coordination Networks