Rational design of tailored porous carbon-based materials for CO2 capture
Abstract
The escalating level of atmospheric CO2 is one of the most pressing environmental concerns of our age. The development of advanced materials for efficient CO2 capture and separation is a burgeoning field that has spurred great interest in materials science. Among the contenders in the arena of CO2 adsorption materials, porous carbons have emerged as particularly promising candidates owing to their unique properties suitable for CO2 capture under a wide range of conditions. This review systematically presents the primary design and synthesis strategies of porous carbons and seminal research that has inspired their advancements, with specific emphasis on uncovering their structure–performance relationship in CO2 capture. Moreover, the underlying mechanism of CO2 adsorption over porous carbons with a defined pore texture and surface chemistry is particularly discussed. Finally, the current challenges and future opportunities in developing porous carbons for practical CO2 capture are summarized. This review is intended to serve as a guideline for rational design of tailored porous carbon materials toward high-performance CO2 capture, benefiting both scientists and engineers active in this emerging and potentially world-changing discipline.
- This article is part of the themed collection: Recent Review Articles