Chemical and photochemical DNA “gears” reversibly control stiffness, shape-memory, self-healing and controlled release properties of polyacrylamide hydrogels†
Abstract
A new class of stimuli-responsive DNA-based polyacrylamide hydrogels is described. They consist of glucosamine–boronate ester-crosslinked polyacrylamide chains being cooperatively bridged by stimuli-responsive nucleic acids. The triggered closure and dissociation of the stimuli-responsive units lead to switchable stiffness properties of the hydrogel. One hydrogel includes glucosamine–boronate esters and K+-ion-stabilized G-quadruplex units as cooperative crosslinkers. The hydrogel bridged by the two motifs reveals high stiffness, whereas the separation of the G-quadruplex bridges by 18-crown-6-ether yields a low stiffness hydrogel. By cyclic treatment of the hydrogel with K+-ions and 18-crown-6-ether, it is reversibly cycled between high and low stiffness states. The second system involves a photo-responsive hydrogel that reveals light-induced switchable stiffness functions. The polyacrylamide chains are cooperatively crosslinked by glucosamine–boronate esters and duplex nucleic acid bridges stabilized by trans-azobenzene intercalator units. The resulting hydrogel reveals high stiffness. Photoisomerization of the trans-azobenzene units to the cis-azobenzene states results in the separation of the duplex nucleic acid bridges and the formation of a low stiffness hydrogel. The control over the stiffness properties of the hydrogel matrices by means of K+-ions/crown ether or photoisomerizable trans-azobenzene/cis-azobenzene units is used to develop shape-memory, self-healing, and controlled drug-release hydrogel materials.
- This article is part of the themed collections: In celebration of Chinese New Year, Most popular 2019-2020 supramolecular chemistry articles, Most popular 2018-2019 supramolecular chemistry articles, 2018 ChemSci Pick of the Week Collection and 2018 Chemical Science HOT Article Collection