Issue 47, 2018

Phosphorized polyoxometalate-etched iron-hydroxide porous nanotubes for efficient electrocatalytic oxygen evolution

Abstract

Splitting water into H2 and O2 attracts significant attention to meet the increasing need for energy. As the oxygen evolution reaction (OER) constitutes the bottleneck in water splitting, the development of efficient OER catalysts is highly desirable. As a potential electrocatalyst for this reaction, we demonstrate herein a facile two-step method to synthesize FeOOH/FePOx porous nanotubes, which involve the phosphorization of β-FeOOH nanotubes that are hydrothermally prepared with the assistance of polyoxometalates (POMs). The acidity of POMs readily modulates the pore size and surface area of the nanotubes. Benefitting from the porous and hollow feature to expose multiple active sites, the FeOOH/FePOx porous nanotubes can be used as a high-performance electrocatalyst, which offers an overpotential of 230 mV at a current density of 10 mA cm−2 with extraordinary stability in 300 h operation. Its superior performance exceeds that of the commercial catalyst (IrO2, 275 mV) under the same conditions and those of most reported Fe catalysts.

Graphical abstract: Phosphorized polyoxometalate-etched iron-hydroxide porous nanotubes for efficient electrocatalytic oxygen evolution

Supplementary files

Article information

Article type
Paper
Submitted
23 Gwen. 2018
Accepted
05 Du 2018
First published
06 Du 2018

J. Mater. Chem. A, 2018,6, 24479-24485

Phosphorized polyoxometalate-etched iron-hydroxide porous nanotubes for efficient electrocatalytic oxygen evolution

H. Lin, J. Wang, X. Guo, S. Yao, M. Liu, Z. Zhang and T. Lu, J. Mater. Chem. A, 2018, 6, 24479 DOI: 10.1039/C8TA09240K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements