Issue 22, 2018

Pre-programmed self-assembly of polynuclear clusters

Abstract

This perspective reviews our recent efforts towards the self-assembly of polynuclear clusters with ditopic and tritopic multidentate ligands HL1 (2-phenyl-4,5-bis{6-(3,5-dimethylpyrazol-1-yl)pyrid-2-yl}-1H-imidazole) and H2L2 (2,6-bis-[5-(2-pyridinyl)-1H-pyrazole-3-yl]pyridine), both of which are planar and rigid molecules. HL1 was found to be an excellent support for tetranuclear [Fe4] complexes, [FeII4(L1)4](BF4)4 ([FeII4]) and [FeIII2FeII2(L1)4](BF4)6 ([FeIII2FeII2]). The homovalent system was found to exhibit multistep spin crossover (SCO), while the mixed-valence [FeIII2FeII2] complex shows wavelength-dependent tuneable light-induced excited spin state trapping (LIESST). For H2L2, a variety of polynuclear complexes were obtained through complexation with different transition metal ions, allowing the isolation of rings, grids, and helix structures. The rigidity of the ligand, difference in its coordination sites, and affinity for different metal ions dictates its coordination behaviour. In this paper, we summarise these ligand pre-programmed self-assembled clusters and their diverse physical properties.

Graphical abstract: Pre-programmed self-assembly of polynuclear clusters

Article information

Article type
Perspective
Submitted
03 Meur. 2018
Accepted
10 Ebr. 2018
First published
18 Ebr. 2018

Dalton Trans., 2018,47, 7384-7394

Pre-programmed self-assembly of polynuclear clusters

T. Shiga, G. N. Newton and H. Oshio, Dalton Trans., 2018, 47, 7384 DOI: 10.1039/C8DT00822A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements