Synthesis and microwave absorption enhancement of graphene@Fe3O4@SiO2@NiO nanosheet hierarchical structures
Abstract
Hierarchical structures of graphene@Fe3O4@SiO2@NiO nanosheets were prepared by combining the versatile sol–gel process with a hydrothermal reaction. Graphene@Fe3O4 composites were first synthesized by the reduction reaction between FeCl3 and diethylene glycol (DEG) in the presence of GO. Then, graphene@Fe3O4 was coated with SiO2 to obtain graphene@Fe3O4@SiO2. Finally, NiO nanosheets were grown perpendicularly on the surface of graphene@Fe3O4@SiO2 and graphene@Fe3O4@SiO2@NiO nanosheet hierarchical structures were formed. Moreover, the microwave absorption properties of both graphene@Fe3O4 and graphene@Fe3O4@SiO2@NiO nanosheets were investigated between 2 and 18 GHz microwave frequency bands. The electromagnetic data demonstrate that graphene@Fe3O4@SiO2@NiO nanosheet hierarchical structures exhibit significantly enhanced microwave absorption properties compared with graphene@Fe3O4, which probably originate from the unique hierarchical structure with a large surface area and high porosity.
- This article is part of the themed collection: Nanoscale 10th Anniversary: Top Cited Articles