Issue 3, 1985

Hexakis(trimethylphosphine)molybdenum chemistry: dinitrogen, ethylene, butadiene, η-cyclopentadienyl, and related derivatives

Abstract

Co-condensation of molybdenum atoms with trimethylphosphine gives octahedral [ Mo(PMe3)6](1) whose crystal structure has been determined. Treatment of (1) with dinitrogen, ethylene, carbon monoxide, iodine, or butadiene gives [Mo(N2)(PMe3)5], trans-[Mo(η-C2H4)2(PMe3)4]fac-[Mo(CO)3(PMe3)3], trans-[MoI2(PMe3)4], and cis-[Mo(η-C4H6)2(PMe3)2] respectively. Protonation of cis-[Mo(η-C4H6)2(PMe3)2] with tetrafluoroboric acid forms the compound cis-[[graphic omitted]CH2CHCHCH2)(η-C4H6)(PMe3)2]BF4. The presence of the Mo–H–C bond is shown by low-temperature n.m.r. spectra, and variable-temperature n.m.r. shows that the agostic hydrogen can scramble between the four terminal carbons of the two C4 ligands. The rate constants and activation parameters for the hydrogen-scrambling process have been determined and a mechanism is proposed. Reaction of cis-[Mo(η-C4H6)2(PMe3)2] with trifluoroacetic acid gives [Mo(η-MeC3H4)(η-C4H6)(PMe3)2(O2CCF3)]. Treatment of [Mo(PMe3)6] with cyclopentadiene forms [MoH(η-C5H5)(PMe3)3] which reacts with aqueous tetrafluoroboric acid giving [MoH2(η-C5H5)(PMe3)3]BF4 and [Mo(η-C5H5)(PMe3)2O]BF4. Reaction of [MoH(η-C5H5)(PMe3)3] with methyl iodide gives [MoH(η-C5H5)(PMe3)2I2].

Article information

Article type
Paper

J. Chem. Soc., Dalton Trans., 1985, 423-433

Hexakis(trimethylphosphine)molybdenum chemistry: dinitrogen, ethylene, butadiene, η-cyclopentadienyl, and related derivatives

M. Brookhart, K. Cox, F. G. N. Cloke, J. C. Green, M. L. H. Green, P. M. Hare, J. Bashkin, A. E. Derome and P. D. Grebenik, J. Chem. Soc., Dalton Trans., 1985, 423 DOI: 10.1039/DT9850000423

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements