Effect of singlet oxygen on redox mediators in lithium–oxygen batteries†
Abstract
The use of a redox mediator (RM) to chemically decompose Li2O2 is an efficient approach to improve the efficiency and cyclability of lithium–oxygen batteries. It has been suggested that RMs can react with the singlet oxygen (1O2) but no attempt has been made to categorize the reactivity of different RMs with 1O2, or investigate the impact of this reaction on the electrochemical behavior of RMs. Here we show that the reactivity of RMs with 1O2 depends on the unique chemistry of the RM, and that the Li2O2 decomposition kinetics of RMs are considerably affected by their reactivity towards 1O2. We examine changes to the chemical and electrochemical properties of RMs after exposure to 1O2. These results suggest that the activity and lifetime of RMs in Li–O2 cells are affected by their reactivity towards 1O2, and that RMs can be classified depending on how easily they react with, or physically quench 1O2.
- This article is part of the themed collection: Journal of Materials Chemistry A HOT Papers