Determination of broadband-light atomic absorption through interferometric spectrometry with a spatial heterodyne spectrometer†
Abstract
A spatial heterodyne spectrometer (SHS) was combined with a flame atomic absorption (FAA) setup to reveal the analytical potential of SHS to be used as a tool for high-resolution atomic absorption studies. Exploiting the advances in modern computational power, the spectral information encoded in the interferograms was extracted and separated. Consequently, unseeable interferometric ingredients corresponding to narrow-band absorption lines could be recognized. Namely, a single SHS absorption interferogram simultaneously contains both illumination background and absorption information, which can be distinguished through a series of computational steps. In the examples given by this work, we demonstrate the construction of Na absorbance spectra from a single image. The described single-image approach can be used to investigate highly dynamic systems, whereby background collections can be obviated.
- This article is part of the themed collection: JAAS HOT Articles 2023