Hexagonal crystalline Magnus’ green salt analogues prepared from hydroxy-functionalised Pt and Pd complexes†
Abstract
New Magnus’ green salt (MGS) analogues, [M(dabdOH)2][MCl4]·2H2O (dabdOH = (2S,3S)-2,3-diaminobutane-1,4-diol; M = Pd (1) and M = Pt(2)), in which [M(dabdOH)2]2+ and [MCl4]2− are stacked alternately to form linear chains, were obtained as hexagonal plate crystals. The hexagonal shape and large crystal size are unprecedented features as MGS analogues. An unusual trigonal grade separation of chain complexes has been revealed by the structural analysis. 1 and 2 exhibited remarkable yellow and pink colours, respectively, which are derived from weak M⋯M interactions. The dabdOH ligand, which has an additional hydrogen donor group (hydroxy group), produces a multiple-hydrogen-bond network. The combination of intrachain and interchain hydrogen bonds gives a two-dimensional (2D) hydrogen-bond sheet, and each 2D sheet is indirectly connected by hydrogen bonds via lattice water molecules. The OH-functionalised ligand greatly increases the hydrophilicity of the MGS analogues and yields the largest single crystals of all MGS analogues reported so far. The trigonal grade-separated chain structure is likely due to the geometric matching between the periodicity of chains and the short axis width of the chain. This strategy opens up new insight for preparing large crystals of MGS analogues and for constructing trigonal grade-separated nanowires in molecular crystals.
- This article is part of the themed collection: New Talent: Asia Pacific