Ultrathin IrRu nanocages with tunable electronic reciprocity for highly efficient water splitting in acidic media†
Abstract
The development of bifunctional electro-catalysts with high efficiency toward both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) in acidic media still remains a challenge. Herein, we report a seed-mediated growth and etching method to fabricate ultrathin IrxRu1−x cubic nanocages with precisely controlled atom accuracy of six atomic layers (∼1.21 nm) and well-defined {200} facets. Tunable electronic reciprocity is achieved through a precise control over the ratio of Ir and Ru, thus simultaneously optimizing the HER and OER performance. The optimal electronic reciprocity is acquired at x = 0.5, and the resultant Ir0.5Ru0.5 nanocages exhibit a significantly low overpotential of 18 mV and 219 mV at 10 mA cmgeo−2 (η10) for the HER and OER in acidic medium, with 22.8 and 18.7 times higher mass activity in comparison with Pt/C and RuO2, respectively. Meanwhile, remarkable durability is pledged at x ≥ 0.5 for IrxRu1−x due to the electrochemical formation of IrxRu1−xO2 as active and stable phases for both the HER and the OER. Consequently, a home-made overall water splitting electrolyzer with Ir0.5Ru0.5 nanocage electrodes can steadily operate and afford η10 as low as 1.472 V and outperforms state-of-the-art electrolyzers.
- This article is part of the themed collection: Journal of Materials Chemistry A HOT Papers