Recent development of two-dimensional metal–organic framework derived electrocatalysts for hydrogen and oxygen electrocatalysis
Abstract
Developing efficient and low-cost electrocatalysts with unique nanostructures is of great significance for improved electrocatalytic reactions, including the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR). Two-dimensional (2D) metal–organic frameworks (MOFs) have attracted recent attention because of their unique dimension-related properties, such as ultrathin thickness, large specific surface area, and abundant accessible active sites that can act as good precursors for the derivation of a variety of nanocomposites as active materials in electrocatalysis and energy-related devices. In this review, we present recent developments in 2D MOF-derived nanomaterials for hydrogen and oxygen reactions in overall water-splitting and rechargeable Zn–air batteries. The advantages of various synthetic strategies are summarized and discussed in detail. Finally, we discuss the main challenges and future perspectives of the development of 2D MOF-derived electrocatalysts.
- This article is part of the themed collections: Editor’s Choice: Functional MOFs and COFs and Recent Review Articles