Issue 9, 2020

Emerging investigator series: quantifying silver nanoparticle aggregation kinetics in real-time using particle impact voltammetry coupled with UV-vis spectroscopy

Abstract

The aggregation of silver nanoparticles (AgNPs) as they encounter biological and environmental systems can dictate their fate and transport. Here, we present a rapid, affordable, and robust analytical method for quantifying AgNP aggregation that combines a single particle electrochemistry technique called particle impact voltammetry (PIV) with the strengths of UV-vis spectroscopy. This orthogonal technique, designated PIV/UV-vis, enables the quantitative evaluation of aggregation kinetics by simultaneously measuring changes in the redox behavior of individual AgNPs and spectroscopic changes in the bulk AgNP colloidal solution. We demonstrate that the frequency of AgNP collisions measured by PIV is correlated to the concentration of monodisperse AgNPs in solution. In this way, aggregation can be quantified by the disappearance of AgNP collisions, much like in UV-vis where aggregation is quantified by the rate of disappearance of the localized surface plasmon resonance band of monodisperse AgNPs. The PIV/UV-vis technique was validated by determining the critical coagulation concentration (CCC) of 40 nm AgNPs in the presence of monovalent and divalent cations. The CCC values determined by PIV and UV-vis were in excellent agreement with one another and were determined as 43 ± 4 and 43 ± 3 mM Na+ and 3.0 ± 0.3 and 3.0 ± 0.1 mM Mg2+, respectively. Using dynamic light scattering, aggregation was confirmed by monitoring changes in AgNP hydrodynamic diameter and results show a clear distinction in aggregation behavior above the CCC. Further, zeta potential measurements were used to monitor changes in AgNP surface charge as another measure of colloidal stability. Overall, PIV/UV-vis is a powerful technique to measure AgNP aggregation due to its speed, affordability, reproducibility, and potential broad applicability.

Graphical abstract: Emerging investigator series: quantifying silver nanoparticle aggregation kinetics in real-time using particle impact voltammetry coupled with UV-vis spectroscopy

Supplementary files

Article information

Article type
Paper
Submitted
08 Mae 2020
Accepted
17 Goue. 2020
First published
17 Goue. 2020

Environ. Sci.: Nano, 2020,7, 2509-2521

Author version available

Emerging investigator series: quantifying silver nanoparticle aggregation kinetics in real-time using particle impact voltammetry coupled with UV-vis spectroscopy

L. Ezra, Z. J. O'Dell, J. Hui and K. R. Riley, Environ. Sci.: Nano, 2020, 7, 2509 DOI: 10.1039/D0EN00490A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements