Issue 17, 2018

Enzyme-instructed self-assembly leads to the activation of optical properties for selective fluorescence detection and photodynamic ablation of cancer cells

Abstract

Both fluorescence and photoactivity activatable probes are particularly valuable for cancer theranostics as they allow for sensitive fluorescence diagnosis and on-demand photodynamic therapy (PDT) against targeted cancer cells at the same time, which undoubtedly promote the diagnostic accuracy and reduce the side effects on normal tissues/cells. Here, we show that enzyme-instructed self-assembly (EISA) is an ideal strategy to develop a both fluorescence and reactive oxygen species (ROS) generation capability activatable probe with aggregation-induced emission (AIE) signature. As a proof-of-concept, we design and synthesize a precursor TPE-Py-FpYGpYGpY that consists of an AIE luminogen (TPE-Py) and a short peptide with three tyrosine phosphates (pY), which permits selective fluorescence visualization and PDT of alkaline phosphatase (ALP)-overexpressed cancer cells. TPE-Py-FpYGpYGpY has good aqueous solubility thanks to the hydrophilic phosphotyrosine residues and hence leads to weak fluorescence and negligible ROS generation ability. After ALP enzymatic dephosphorylation of the precursors, however, self-assembly of ALP-catalysed products occurs and the resultant nanostructures are activated to be highly emissive and efficiently produce ROS. Cellular studies reveal that TPE-Py-FpYGpYGpY is capable of differentiating cancer cells and normal cells, specifically pinpointing and suppressing ALP-overexpressed cancer cells. This study may inspire new insights into the design of advanced activatable molecular probes.

Graphical abstract: Enzyme-instructed self-assembly leads to the activation of optical properties for selective fluorescence detection and photodynamic ablation of cancer cells

Supplementary files

Article information

Article type
Paper
Submitted
10 Here 2017
Accepted
14 Du 2017
First published
14 Du 2017

J. Mater. Chem. B, 2018,6, 2566-2573

Enzyme-instructed self-assembly leads to the activation of optical properties for selective fluorescence detection and photodynamic ablation of cancer cells

S. Ji, H. Gao, W. Mu, X. Ni, X. Yi, J. Shen, Q. Liu, P. Bao and D. Ding, J. Mater. Chem. B, 2018, 6, 2566 DOI: 10.1039/C7TB02685D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements