A porous metal–metalloporphyrin framework featuring high-density active sites for chemical fixation of CO2 under ambient conditions†
Abstract
Self-assembly of the custom-designed octatopic porphyrin ligand of tetrakis(3,5-dicarboxybiphenyl)porphine with the in situ generated Cu2(CO2)4 paddlewheel moieties afforded a porous metal–metalloporphyrin framework, MMPF-9, which features a high density of Cu(II) sites confined within nanoscopic channels and demonstrates excellent performances as a heterogeneous Lewis-acid catalyst for chemical fixation of CO2 to form carbonates at room temperature under 1 atm pressure.
- This article is part of the themed collection: 2014 Emerging Investigators