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Unusual thermoelectric properties mediated by
solute segregation in tellurium alloyed CoSbS+

Weihong Gao,? Yuxi Yang,® Mingqi Deng,® Bin Sun,” Yudong Fu,*® Xiang Wei,®
Yixuan Li,? Zihang Liu ® * and Jiehe Sui® *©

The doping or alloying effect is effective for tuning the carrier concentration and/or lowering the lattice
thermal conductivity in thermoelectrics. Herein, taking Cog 94Nio.06SbS; xTe, as a typical example, we
observed an unusual phenomenon where Te alloying mediates grain growth. It was observed that the Te
dopant tended to be segregated along grain boundaries as a precipitate, resulting in an increase in grain
size from 0.36 um to 0.57 pum. The grain growth optimizes the low-temperature carrier scattering
mechanism, leading to a higher power factor that represents a superior value in advanced sulfur-based
thermoelectric materials. The lattice thermal conductivity was, however, slightly suppressed, which was
higher than the Debye-model prediction. As a compromise, the average thermoelectric figure of merit
(zT) was enhanced after Te doping, higher than those of other CoSbS based materials. Overall, this work
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Introduction

Thermoelectric devices can directly convert a temperature
gradient to electricity and vice versa, which plays a vital role in
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proves the significance of solute segregation in the optimization of thermoelectric performance.

the applications of these materials in aerospace power, refrig-
eration, and energy harvesting."® The corresponding thermo-
electric performance, including the conversion efficiency for
power generation and the cooling coefficient of performance for
cooling applications, is dominated by the dimensionless ther-
moelectric figure of merit (z7), which is defined as zT = (S0 /k 1)
T, where S, o, ki, and T are the Seebeck coefficient, electrical
conductivity, total thermal conductivity (including lattice
thermal conductivity ki, and electronic thermal conductivity
Kele), and absolute temperature, respectively.* To enhance the 2T
of a target material, conventional strategies rely on carrier
concentration optimization to increase the power factor (PF =
$%¢) and/or isoelectronic alloying to strengthen phonon scat-
tering to Suppress K.’

Over the last two decades, the significance of microstructural
engineering in tuning thermoelectric properties was realized
and demonstrated,’ in which a remarkable effect was demon-
strated where «;,; was reduced through delicate control of the
material synthesis process to introduce phonon-scattering
centers, e.g., grain boundaries,'*** nanoprecipitates,'*** dislo-
cations,'*® and pores.”?° In contrast, few relevant studies have
focused on the influence of microstructural defects on carrier
transport. Very recently, it was found that grain boundary
scattering, a previously overlooked factor, plays a vital role in
the carrier scattering strength for some thermoelectric material
systems, e.g., Mg,Si,* Mg;Sb,,?>** PbSe-NaSbSe,,” and Hf/
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ZrCoSb.”® Eliminating the additional scattering mechanism via
increasing the grain size is therefore responsible for the
experimental maximization of the PF.

Tellurium (Te) based thermoelectric materials, such as low-
temperature Bi,Tes,'**”>° and intermediate-temperature PbTe
and GeTe,** ¢ exhibit high zT values in their working tempera-
ture range. However, the scarcity of Te, with an abundance in
the Earth's crust of around 0.001 ppm, may restrict their wide
applications. Considering the significantly high earth abun-
dance of sulfur (S) of around 350 ppm, S-based materials,
including Bi,S;,*%** PbS,*>* Cu,S,*** and CuFeS,,**** have
received intensive interest for the replacement of their Te-based
counterparts. Due to their increased ionic bonding strength, S-
based materials for thermoelectric applications are prone to
exhibiting both low ¢ and PF as a consequence of low charge
carrier mobility, uy. Parker et al. first reported the potential
thermoelectric performance of a paracostibite CoSbS
compound using combined theoretical and experimental anal-
ysis.*® Very recently, this system was demonstrated to have an
ultrahigh PF that exceeds the benchmark of 20 yW cm™* K>
using Ni or Te doping as strong n-type dopants.**** This
attractive property is due to the several conduction bands
around the Fermi level, contributing to the high band degen-
eracy, as well as the nonexistence of compensating or killer
intrinsic defects.**** In contrast, CoSbSe and CoSbTe, both of
which are not isostructural to CoSbS, are metallic conduction
type materials. Isoelectronic alloying by Se on the S site further
reduces K, and therefore increases z7.>*>* The recent discovery
of the colossal power factor of CoSbS single crystals over the
cryotemperature range also motivated interest in condensed
matter physics.>>>*

Herein, we systematically investigated the influence of Te
alloying on the microstructure and thermoelectric properties of
Cog.94Nig 06SbS. It was found that the solute segregation medi-
ated by Te alloying led to increased grain size, which resulted in
anomalous transport properties. The carrier scattering mecha-
nism was beneficially changed, leading to simultaneous
increases in carrier mobility and power factor. Meanwhile, the
thermal properties were slightly influenced due to the
compromise between the introduced point defects and weak-
ened grain boundary for phonon scattering. As a result, Ni and
Te codoping in CoSbS significantly increased the power factor
and zT, with maximum peak values of around 20.6 yW cm ™" K>
and 0.65, respectively, which highlights the prospects of this
material for intermediate-temperature thermoelectric power
generation.

Experimental
Materials

High-purity raw materials were directly weighed according to
nominal composition Cog.94Nip 0sSbS;1_,Te, samples (x = 0,
0.02, 0.04, and 0.06), loaded into a ball-milling jaw in a glove-
box, and finally subjected to a one-time ball milling process
without stopping for 5 h (SPEX SamplePrep 8000 Mixer Mill).
The obtained nanopowders were loaded into a graphite die and
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sintered via a direct-current quick hot press system at 1023 K
under a pressure of ~80 MPa for 2 min.

Phase and microstructure characterization

Phase structures were characterized by powder X-ray diffrac-
tometry (PXRD, PANalytical X'Pert Pro) using Cu K, radiation.
PXRD patterns revealed that the materials crystallized with an
orthorhombic structure (Pbca space group) rather than in the
Pmn2, space group (Fig. S1}). The obtained Rietveld refinement
parameters proved the good quality of the sample data. The
sample crystallinity was not apparently changed and there was
no second phase observed for the Cog ¢4Nig 06SbS; _,Te, samples
within the detection limit of the PXRD apparatus. Microstruc-
tural analysis was conducted using a scanning electron micro-
scope (SEM, JEOL6330F) and a scanning transmission electron
microscopy (STEM, Thermo, Talos F200X G2, USA) with a high-
angle annular dark-field (HAADF) detector and energy disper-
sive spectroscopy (EDS) was also employed. TEM samples were
prepared using a conventional Ar-ion milling process.

Physical property measurements

Bar samples were cut from pressed disks and used for the
simultaneous measurement of electrical resistivity (p) and See-
beck coefficient (S) on a commercial system (ULVAC ZEM-3).
The thermal conductivity k. was calculated using kiox =
DCpd, where D, Cp, and d are the thermal diffusivity, specific
heat capacity, and density, respectively. The thermal diffusivity
coefficient (D) and specific heat capacity (Cp,) were concurrently
measured on disk samples on a laser flash system (Netzsch LFA
457, Germany). The sample density (d) was determined using
the Archimedes method. The room-temperature Hall coefficient
Ry; was measured using a PPMS (physical properties measure-
ment system, Quantum Design) instrument. The Hall carrier
concentration (ny) was obtained using ny = 1/eRy and the Hall
carrier mobility (uy) was calculated using o = euyny, where e is
the electronic charge and ¢ is the electrical conductivity.

Results and discussion

Previous density functional theory (DFT) calculations revealed
that CoSbTe crystallizes in the Pnn2 space group and exhibits
a semimetal band structure.” Therefore, Te alloying in CoSbS
would decrease the bandgap accordingly (Fig. 1a). The charge
carrier concentration ny increased gradually, with the room-
temperature value increasing from 7.9 x 10”° ecm ™ for Cog.o4
NigosSbS to 9.0 x 10%° em™2 for Coy.94Nig 06SbSo.04T€0.06
(Fig. 1b). Considering that S and Te have the same number of
valence electrons, this may be related to the associated change
in the intrinsic point defect, e.g., the Teg, antisite defect.*®
Surprisingly, we also observed an increasing trend in the charge
carrier mobility uy, e.g., 2.2 cm®> V' s~ for Cog 04Nig.06SbS and
2.5 em® V' s7! for Cog.04Nig.06SbS0.06T€0.04 (Fig. 1b). The
simultaneous increases in both 7y and uy contribute towards
increased electrical conductivity o, e.g., the room-temperature
value increased from 2.8 x 10* S m™" for C0y.94Nis 6SbS up to
3.4 x 10° S m™ " for Cog.04Nig.06SbSo.04T€0.06 (Fig. 1c). More

This journal is © The Royal Society of Chemistry 2022
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Fig. 1 Electronic properties of Cog.g4Nig 06SbS1_xTeyx samples (x = 0, 0.02, 0.04, and 0.06). (a) Schematic diagram of band structure evolution
after Te alloying in CoSbS, (b) charge carrier concentration ny and carrier mobility uy values at room temperature as a function of Te alloying
content, (c and d) temperature-dependent electrical conductivity o and Seebeck coefficient S, respectively, (e) the calculated bandgap based on
the Goldsmid—Sharp method, and (f) the temperature-dependent power factor PF.

importantly, despite its high ny, C00.94Nig 06SbS still exhibits
a positive slope for the relationship between ¢ and 7, which is
the signature of an intrinsic semiconductor. This implies the
occurrence of an additional carrier-scattering mechanism in
CoSbS based materials in addition to acoustic phonon-carrier
scattering and the high effective mass of carriers. This may
include grain boundary scattering, impurity ionic scattering,
and magnetic scattering.*” It should be noted that Te alloying
beneficially tunes the scattering mechanism, which can be
ascribed to the weakened grain boundary scattering that will be
discussed in the following. As expected, the Seebeck coefficient
S is decreased after Te alloying due to the increased ny (Fig. 1d).
Due to the compromise between the increased ny and the
reduced Eg, the peak of S is maintained at around almost the
same position. Based on the Goldsmid-Sharp band gap formula

This journal is © The Royal Society of Chemistry 2022

Ey = 2€|S|maxTmax, Where |Sp,.| represents the maximum of
absolute Seebeck coefficient and Tphax is the temperature at
which this value occurs, the observed decreasing trend after Te
alloying is consistent with previous DFT calculations (Fig. 1e).
Consequently, Te alloying leads to an increase in the power
factor PF, with a maximum peak value of around 20.6 pW cm ™
K2 (Fig. 1f).

To further unveil the underlying mechanism of the unusual
electronic properties after Te alloying, the single parabolic band
(SPB) model was utilized for analysis herein. Based on the
Pisarenko plot, namely the ny; dependent S, it is observed that
the data of CoSbS-based samples, including Ni and Te codop-
ing, as well as Ni doping,*® are located around the obtained line
with a total density of states effective mass m* = 6m, (Fig. 2a).
This indicates that there is no significant change in the

J. Mater. Chem. A, 2022, 10, 19829-19838 | 19831
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Fig.2 Charge carrier concentration nyy dependent room-temperature electronic properties of the Cog.94Nip.06SbS1_xTe, samples (x = 0, 0.02,
0.04, and 0.06), in comparison to Ni doped CoSbS. (a) The Pisarenko plot, (b, c and d) the charge carrier mobility uy values, the predicted
weighted mobility uw, and the power factor PF, respectively. The dashed lines were obtained based on a single parabolic band (SPB) model with

a total effective mass of m* = 6me.

conduction band minimum around the Fermi level, which
indicates the effectiveness of the rigid band model. Our present
conclusion is consistent with previous first-principle calcula-
tions that also revealed the unchanged band structure in
CoSbS; _,Te,.*® Compared to Ni doping, Ni and Te codoping
leads to a higher uy at the same ny (Fig. 2b). In thermoelectrics,
the weighted mobility uyw, irrespective of the doping element
and/or ny, can be well used to evaluate the ability of a material's
electronic properties,*®® which is codetermined by the drift
mobility up and the m*, as shown in the following equation:

My = Bp (m—*) b 1)

ne

where m, is the electron mass. Herein, we used the simplified
model to calculate the up and uw.*” It is found that Ni and Te
codoped samples possess a higher uy than Ni doped samples at
the same ny; (Fig. 2¢). Similarly, a higher PF is achieved for Ni
and Te codoped samples, consistent with the tendency of uy
(Fig. 2d). All the above mentioned analysis indicates the
anomalous electronic properties observed for Ni and Te
codoping that are beyond the conventional SPB model.
Considering the almost unchanged band structure, grain
boundary scattering should be the most plausible reason to

19832 | J Mater. Chem. A, 2022, 10, 19829-19838

account for the unusual properties. Therefore, the average grain
size was analyzed by SEM characterization on the freshly frac-
tured surfaces of samples of C0g.94Nip.06SbS and Cog 94Nip 06
SbS¢.96Te0.04, respectively (Fig. 3a and ¢). Cog 94Nig 06SbS sample
has an average grain size of around 0.36 pm (Fig. 3b), which
increased up to around 0.57 um after Te alloying (Fig. 3d).
Moreover, the grain size distribution changed from unimodal to
bimodal, indicating that Te alloying leads to inhomogeneous
grain growth, namely abnormal grain growth characteristics.
Therefore, the corresponding underlying mechanism is due to
the increased grain boundary energy for some specific grain
boundaries after Te alloying.

In metallurgy and ceramics science, it is widely acknowl-
edged that impurities and alloying elements can significantly
alter boundary energetics since these solute elements tend to be
easily segregated along grain boundaries.”® A well-known
example is doped alumina, in which these segregated solute
atoms alter the local bonding environment and thereby affect
microstructure evolution.*>®® The origin of abnormal grain
growth behavior is assumed to be related to nonuniform grain
boundary mobility,** due to the appearance of wetting phases
along the grain boundary.>***> To have a deep understanding of
microstructural evolution in Te-alloyed Cog 94Nig 06SbS, we

This journal is © The Royal Society of Chemistry 2022
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Fig. 3 (a and c) SEM images of freshly fractured surfaces of Cog 94Nig 0sSbS and Cog 94Nig.06SbS0.06 T€0.04. respectively; (b and d) their corre-

sponding grain-size distribution analysis.

performed a thorough characterization on the Cog94Nig.o6-
SbSy.96T€¢.04 Sample based on HAADF-STEM analysis, because
the contrast in HAADF-STEM images is strongly dependent on
the atomic number. Most of the precipitates were observed to
occur around the grain boundary in the nanosized range with
a low concentration (Fig. 4a), which are consistent with the
sample composition and PXRD refinement results. It should be
noted that these spherical-shaped particles in the grain, con-
sisting of Si, C, O elements, are formed during the sample
preparation process of the TEM observations. Grain boundaries
with high energy are preferential locations for solute segrega-
tion that could lower the total energy and promote precipitation
behavior at the grain boundary. Coupled with the chemical
composition analysis (STEM-EDS), elemental Te segregates
modestly to the grain boundary by means of precipitation
(Fig. 4b). Considering the similar atomic numbers of Sb and Te,
this means that the Te element is dominant (or as the elemental
precipitate) in this precipitated compound. By checking the
binary Sb-Te phase diagram, the highest possibility of this
precipitate is therefore elemental Te, since there is no Te-rich
compound near the end of this diagram. Since Te element
has a relatively low melting point of 723 K, the segregation along
the grain boundary acts as the ‘welting phase’ character that
could lead to grain growth via liquid phase sintering. From the
viewpoint of chemical bonding, the substitution of S atoms with
Te atoms leads to the smaller difference in atom electronega-
tivity, corresponding to weaker polar bonding strength around
the grain boundary, therefore promoting grain growth. More-
over, since we used the high-energy balling method in combi-
nation with the SPS technique to synthesize the nanostructured

This journal is © The Royal Society of Chemistry 2022

thermoelectric materials with an average grain size of 0.36 um,
structural instabilities derived from a high number of grain
boundaries provided the driving force for grains to reduce the
total area of grain boundaries and in turn suppress the excess
free energy per unit.

Despite the big difference in the measured ny after Te
alloying, the ki of the Co¢.94Nig.06SbS;_,Te, samples reduces
slightly over the low-temperature range (Fig. 5a), whereas Te
alloying suppresses the bipolar effect above 673 K due to the
remarkably increased ny. Herein, we used the single parabolic
band (SPB) model approximation with acoustic phonon scat-
tering to calculate the Lorenz number (L). After subtracting the
electronic thermal conductivity keje = LoT from k¢, the calcu-
lated lattice thermal conductivity i, is found to dominate the
kit and therefore shows a similar trend to ke (Fig. 5b).
Remarkably, Te alloying has an extremely weak influence on k.
To further assess the theoretical contribution of phonon scat-
tering from point defects, the Callaway-Debye model was used
here,”* as in the following:

In terms of a material containing substitutional defects,
namely CoSbS;_,Te, samples, the relationship between the k4,
and ki, of the pure CoSbS sample can be written as:

o tan”!
K _ tan (u) @)
Klat,p u
Here the parameter u is defined by:
) 1
T 0pQ 2
u= <Ta2Klm,pF) [3)
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Fig. 4 (a) The high-resolution HAADF-STEM image around the grain boundary and (b) the high-resolution HAADF-STEM image and EDS
mapping of the elemental segregation along the grain boundary.

where Q and & represent the average volume per atom and 171 21\ 3
Planck constant, respectively, and the average sound velocity v, Vy = (_ {_ + _} ) (4)
can be calculated from:*”

19834 | J Mater. Chem. A, 2022, 10, 19829-19838 This journal is © The Royal Society of Chemistry 2022
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Here, the longitudinal (v, 5878 m s~ ') and transverse (vs.,
3542 m s~ ') sound velocities were used in eqn (3) and the ob-
tained v, was around 3917 m s~ *. The Debye temperature 6, can
be calculated using:

1
h [3N 13
Op = k_B {m] Va (5)

where the Vis the unit-cell volume, N is the number of atoms in
a unit cell, and kg is the Boltzmann parameter. The obtained
is around 454 K. The imperfection scaling parameter I" in eqn
(2) represents the strength of phonon scattering from point
defects, including two components, the scattering parameter
I'ys due to mass fluctuation and the scattering parameter I's due
to strain field fluctuation. A phenomenological adjustable
parameter ¢ is included to better estimate I's, which can be

derived from:
2 (64xy(1+v,))
4 x

(1—vp)

This journal is © The Royal Society of Chemistry 2022

3/ 1+,
= (= 8
L) <2 ~ 3, (8)
where vy, is the Poisson ratio, with a value of 0.22, the Gruneisen
parameter (y) was calculated to be around 1.34, and the
phenomenological adjustable parameter ¢ is around 39.

No compositional change occurs on the sites of Co and Sb,
I'co = I'sp = 0, and the substitution between S and Te gives:

1 (Mste \*
Tcosvs, ,Te, = 3( (—M'TB)) I'ste) )
I'=Ty+Ts (10)
I's1e) = I'vis.1e) T €l's(5.Te) (11)
AM \?
r =x(1- 12
M(sTe) = X(1 = x) ( M(s,m) (12)
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the Cog.94Nio 06SbS:_xTe, samples with other reported CoSbS samples prepared by Hou et al., Yao et al.,, and Guelou et al.

where AM = My, — Mg and M(ste) = (1 — X)Msg + xMr,

I'sres) = x(1 — x)( ar )2 (13)

'(Te,S)

where Ar = rpe — rs and rires) = (1 — X)rs + xrrethen,

AM \’ Ar\?
F(TE?S) - x(l - X) |:(M(Te S)) e (V(Te S)> :| (14)

and then,
1 M<Tes>)2 ( AM )2 ( ar )2
I'c, Tey = 3 = x(l—x +
CoSbS;_, Te, 3 ( M ( ) (Te,S) ‘ T (Te,)
(15)

<

Based on the above eqn (2)-(15), the obtained «j,. of defective
CoSbS containing substitutional Te defects at the S sites is
shown as a dashed line in Fig. 5c. Apparently, the slight
reduction in k), after Te alloying is beyond the prediction based
on the conventional Callaway-Debye model. Since the atomic
mass of the impurity atom Te (127.6 g mol ") is much larger
than that of the host atom S (32.06 g mol '), the calculated
imperfection scaling parameter from the strain field fluctuation
was higher than that of the mass fluctuation considering the
similar atomic radii of S (102 pm) and Te (135 pm) (Fig. S27).
Here, it should be noted that the additional scattering mecha-
nism may lead to an overestimated «j,..** In contrast, due to
their larger grain sizes, Ni and Te codoped samples exhibit
higher uw and lower «j,, values than Ni-doped samples, which
follows conventional thinking and is therefore distinct from the
unusual findings on the Mg3(Sb,Bi), system. The overestimated
Kkiae value of defective CoSbS based on the point-defect model
was due to the significantly increased grain size after Te alloying
that weakens the grain boundary scattering. Therefore, alloying
dopant-mediated grain growth leads to anomalous thermo-
electric properties that are beyond conventional thermoelectric
prediction models.

Due to the increased PF and suppressed k., Te alloying
leads to enhanced zT across the entire measured temperature
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range, in which the peak zT'value at 873 K is increased from 0.47
to 0.65 (Fig. 6a). Meanwhile, the highest average zT ~ 0.31 is
achieved for Cog 94Nig 90sSbS¢.08T€0.02, higher than those of other
optimized CoSbS-based samples (Fig. 6b). Our results thus show
the potential of using CoSbS-based samples for power genera-
tion at intermediate temperatures.

Conclusions

In summary, we observed a novel phenomenon of solute
segregation along the grain boundary of alloying mediated
grain growth in Cog94Nig 06SbS;_,Te, samples, which led to
anomalous thermoelectric properties. Specifically, the average
grain size was increased from 0.36 um to 0.57 um after Te
alloying. Due to the weakened strength of grain boundary
scattering for electrons and phonons, the carrier mobility was
increased while the lattice thermal conductivity was slightly
suppressed. As a result, Ni and Te codoping in CoSbS signifi-
cantly increased the power factor and zT, with maximum peak
values of around 20.6 pW cm ™' K~* and 0.65, respectively. Our
work highlights the significance of solute segregation on ther-
moelectric properties that are beyond conventional thermo-
electric model prediction.
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