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We have constructed deep neural networks, which can map fluctuating photo-electron
spectra obtained from noisy pulses to spectra from noise-free pulses. The network is
trained on spectra from noisy pulses in combination with random Hamilton matrices,
representing systems which could exist but do not necessarily exist. In [Giri et al., Phys.
Rev. Lett., 2020, 124, 113201] we performed a purification of fluctuating spectra, that is,
mapping them to those from Fourier-limited Gaussian pulses. Here, we investigate the
performance of such neural-network-based maps for predicting spectra of double
pulses, pulses with a chirp and even partially-coherent pulses from fluctuating spectra
generated by noisy pulses. Secondly, we demonstrate that along with purification of
a fluctuating double-pulse spectrum, one can estimate the time-delay of the underlying
double pulse, an attractive feature for single-shot spectra from SASE FELs. We
demonstrate our approach with resonant two-photon ionization, a non-linear process,
sensitive to details of the laser pulse.

1 Introduction

Machine learning (ML) has recently been applied not only in physics,' but more
specifically in strong-field physics.*® One of the most abundant topics has been
the reconstruction of the temporal shape of an ultrashort laser pulse, aided by ML
techniques.” The most popular techniques for this reconstruction have been
different variants of streaking techniques which normally require considerable
additional experimental effort, namely a Terahertz laser light source. With its
help, one can generate a large amount of data—the streaking traces—which can
be processed with ML to extract the attosecond pulse shape.”® However, also
a direct method from single-shot spectra has been introduced.®
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In a different vein, a trained neural network has been proposed to represent
a (semi-)classical path integral for strong-field physics,' replacing the need to
explicitly calculate a large number of classical trajectories to eventually determine
the photo-ionization cross section, which is, however, still an approximation as it
is constructed semi-classically. To supply training data for a network which can
represent the full quantum path integral, implies most likely use of a numerical
effort that would be higher than calculating observables directly.

In general, training of a deep neural network needs a very large amount of non-
trivial training data. To generate them experimentally requires substantial addi-
tional effort (see the streaking example above). To obtain such data without
serious approximations within theory is often prohibitively expensive, as in the
second example.

Acknowledging this situation, we have invented another approach: to calculate
exactly and explicitly (with the time-dependent Schrodinger equation) photo-
electron spectra with a large number of pulses and artificial systems, for which
the calculation can be done very quickly. In this way we are able to supply learning
data consisting of about 10’ spectra. A network trained with these synthetic
systems, is not only able to purify noisy test spectra unknown to the network, but
from the same class of synthetic systems the training was performed with. Also
“real” spectra can be purified, which could come from experiment, or for this
work, from a realistic full calculation with parameters for the helium atom.
Moreover, noise is, in the context of machine learning, helpful when applied to
non-linear photo-ionization: photo-excitation and ionization processes are
subject to strict angular-momentum selection rules, thereby limiting the coupling
of light to matter. If a light pulse contains noise and operates in a non-linear (at
least two-photon absorption) regime it will couple to a much larger part of the
electron dynamics of the target. This helps to train the mapping better and
enlarges the pool of training spectra naturally.

In general, all trained networks we will present, map one type of spectrum into
another (desired) one for a photo-ionization scenario of which only a few key
elements need to be specified: the target system should have an excited state
around the photon energy w+, above the ground state, and intensities of the light
pulse should be such that two-photon processes dominate. It is not necessary to
know more about the target system, as ideally all target systems accessible by the
light as specified are covered by the learning space for the synthetic systems,
represented by synthetic Hamilton matrices (SHMs). Therefore, one can apply
a trained network also to an experimental spectrum from noisy pulses without
detailed knowledge of the target system.

Once the design for training such networks with SHMs is set up, that is, the
spectra for learning have been computed, it is not difficult to construct other
maps with new networks, as the major effort is to supply the learning data which
do not have to be changed, while training new networks is computationally
relatively cheap. This allows us to provide several mappings in the following to
predict spectra for ideal double, chirped and even highly structured partially
coherent pulses from noisy spectra. Finally, we will introduce network based
mapping for a typical SASE FEL situation: there, single-shot noisy spectra are
recorded which depend on further, not explicitly known parameters, e.g., the
geometrical orientation of the sample or the time-delay of double pulses used.
Considering the latter situation, we reconstruct from noisy spectra
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simultaneously the noise-free spectra and the time-delay of the double pulse.
While we cannot do this with the accuracy of the designated algorithms as
described in the context of streaking above, we do not need any additional
information but the spectrum itself.

The paper is organized as follows: in Section 2 we give details on the repre-
sentation of the noisy pulses, explain how to construct the SHMs and describe our
fast propagation scheme to solve the electronic Schrédinger equation to obtain
the photo-ionization spectra. Section 3 details how the network is trained and set
up, including measures on how to quantify errors in the reconstruction of spectra
and a convenient way to parameterize them. In Section 4 we present the predic-
tions of the photo-ionization spectra for various pulse forms. Section 5 discusses
the single-shot FEL scenario. The paper ends with conclusions in Section 6.

2 Prerequisites

To determine the photo-ionization dynamics we need two elements, the noisy
pulses and an efficient way to describe the electron dynamics. In the end we will
specify the process we are interested in, namely two-photon absorption.

2.1 Pulses

We distinguish between the “noisy pulses” which lead to fluctuating spectra and
the “reference pulses” for which we want to predict spectra.

There are many different possibilities for incorporating noise into a signal. We
choose the partial-coherence method." "> With this method one can create noisy
pulses whose average over an ensemble has a well-defined pulse shape. As
experimentally demonstrated,' these kinds of pulses represent pulses from SASE
FELs well. In the following, we will use the pulse parameterisation

S(1) = NGH(D)F (1), (1a)
Gr(t) =22/ F () = 5! [effﬂw 7 [e*fz/ cos(w*t)” , (1b)

where # and ! are the Fourier transform and its inverse, and w= is the carrier
frequency. Noise is introduced through random spectral phases ¢, uniformly
distributed in the interval —m = ¢ = +m. The time scale of the fluctuations is given
by the coherence time 7, while the Gaussian G{¢) limits the typical pulse duration
to T. Otherwise, the pulse duration could grow beyond all limits due to the
presence of random spectral phases. A specific (deterministic) noise realization
we will label with ¢(w). If not stated otherwise, we use T'= 3 fs and © = 0.5 fs in the
following. In order to deal with comparable pulses, we use the normalisation
constant N to fix the pulse energy E,, which would otherwise fluctuate from
realisation to realisation.

Any reasonable pulse can serve as a reference pulse, for which the map created
by the network can predict the spectrum. Reasonable means in the present context
that the reference pulse’s frequency spectrum is covered by the learning space of
fluctuating spectra. The simplest choice is the Gaussian G{t) in eqn (1) itself
rendering the prediction equivalent to removing the fluctuations from the spec-
trum. Therefore, we call this type of map “purification”.® In Section 5 we will
purify fluctuating spectra from double pulses.
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2.2 Paradigmatic 1-dimensional strong-field electron dynamics

Although the subsequent scheme to construct SHMs is general, for the sake of
clarity we will describe it for the processes we will consider as an example, namely
two-photon absorption in a helium atom. Thereby, the carrier frequency w+ of the
laser is chosen to be quasi-resonant with the transition energy to the first optically
allowed excited state.

A simple and convenient way to realize this concept is to consider 1D dynamics
with a soft-core potential. The corresponding active one-electron Hamiltonian for
helium is given by

=T v = L) - @)
= — X)= —|I— N
0 2 dx \/x2 + a?
with the soft-core parameter a = 1/4/2 which gives a ground-state energy E, =
—24.2 eV, close to the ionization potential of real helium (24.6 eV). We represent
the Hamiltonian on a grid x; = jAx, with Ax = 0.067 a.u. and Xmax = 500 a.u., and
determine by diagonalization the eigenenergies Hy|o) = |a)E,, from the ground
state up to E, < Epax = 48 €V, resulting in 600 eigenstates.

With these eigenstates we calculate the matrix of the time-dependent Hamil-
tonian H(t) = H, + A(t)p in velocity gauge

I:Iag(l) = Eaéag + A(l) I;'Mg with VagE <Dé

f%@ (3)

with the vector potential A(¢) = A f{t), A being the field amplitude.

2.3 Synthetic Hamilton matrices (SHMs)

Since we want to train our network such that it recognizes almost arbitrary
systems, which only need to have a (quasi-)resonant transition energy for the first
absorbed photon, we create SHMs by randomly changing energies E,, and matrix
elements Vg, about the 1D example system defined in eqn (2) and (3) through the
variation of four parameters in

E,=35"E, for E, <0, a>0, (4a)
Voo = 3%V, for E, <0, (4b)
Vg = 37V o for E, <0, Eg> 0, (4c)
Vg = 3%V o for Ea > 0,E5 > 0. (4d)

Here, £;_4._ 4 = [—1, + 1] are four uniform random numbers which lead to a large
variety of artificial systems with different bound-state energies eqn (4a), and
couplings between ground and bound states eqn (4b), as well as between bound
and free states eqn (4c), and among free states eqn (4d). Finally, with the
parameter vy the condition of resonant first-photon absorption can be met. In the
present case the energy difference between ground and the excited state is equal
to the central laser frequency ws, i.e., E; — Ey = w« if ¥ = 0.891 and £; = 0. Note,
that y does not normally hamper the application to experimental situations, as
one typically knows the binding energy and the central photon frequency. Finally,
we construct SHM H,4(¢) inserting E,, and V,g into eqn (3).
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The idea of SHM is an essential part of our approach which serves two
purposes: (i) it allows us to supply a sufficient number of theoretical learning data
for the network and (ii) it represents a large variety of systems which could exist in
nature but do not necessarily. The SHM should be “dense enough” in the
parameter space such that always the Hamilton matrix of a real system one is
interested in can be interpolated between SHMs, as interpolation capability is
a strength of neural networks (in contrast to extrapolation). Of course, one can
formulate more sophisticated SHMs with more parameters, but for the present
case the four random parameters are sufficient.

Yet, we need to overcome one final obstacle, and that is the calculation of the
spectra based on the SHMs. To obtain those spectra for arbitrary pulse forms A(¢)
requires us to solve the time-dependent Schrodinger equation (TDSE) which in
turn implies that we need an extremely fast propagation scheme to be able to
solve the order of 10" TDSEs in a reasonable time.

2.4 Fast solution of the TDSE with SHMs

To achieve high propagation efficiency, we make use of the fact that the Hamilton
matrix eqn (3) depends explicitly on time only through the vector potential A =
A(?). Hence, instead of discretizing the time equidistantly, we discretize the vector
potential Apin = A = Apax iD jmax, Steps with A; = jéA with 6 A = (Amax — Amin)/(fmax
—1).

With the time-independent Hamiltonian H; = H, + A; p, we can construct
a short-time propagator which is valid over a time span 6¢; short enough such that
a fixed 4; is a reasonable approximation. Therefore, the unitary short-time prop-
agator can be obtained by direct integration,

U = e ', (5)

The full propagator U(t;,t;) = [[UF%, is now simply a concatenation of the
k

short-time propagators over respective time spans 6t (with k = 1, ..., kmax) Over
which the discretized 4; hold, where 6t; = ¢, — t;and 0t = tr — 1.

To make efficient use of the SHMs, it is imperative that we use the matrix elements
from eqn (4) as they do not require explicit integration over wave functions. Hence, we
diagonalize (a|H|8) = E.d.s + joAV,g in the basis of H, to give its eigenenergies
F, and eigenfunctions qﬁ"y = ZW{@QS& leading to the short-time propagator

o

. e
Uss = D Wie W (6)
Y

for fixed vector potential A;. With 64 = 0.008 we reach convergence in the solution
of the TDSE which has been checked against converged propagation results by
conventional solution for the cases studied here.

Note, that over the entire pulse A(¢) certain A; may occur more than once with
different time intervals over which they are valid (if the local derivative dA(t)/d¢|4,
is large, the time interval will be small and vice versa). Therefore it is worthwhile to
compute the U, beforehand and keep them stored. They can be used for all
pulses (the fluctuating ones as well as the reference one) for a Hamilton matrix
specified by the elements in eqn (4). Furthermore, we do not calculate the full
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matrix of the propagator which would involve many matrix products. It is suffi-
cient to propagate the vector |0) of the initial state (the ground state of the system)
which requires only the computation of matrix-vector products. Only in this way
were we able to calculate the millions of spectra, necessary to train the network.

3 Training the network

Through training with fluctuating spectra from the SHMs, the deep neural
network encodes the dynamics of two-photon absorption spectra with the central
photon frequency w- for all target systems covered by the SHMs. If the network
“sees” during training a specific class of spectra much more often than repre-
sentatives of other classes, it will be biased towards those often found spectra
once trained. Hence, we have to fill the learning space of spectra (available for
training, validating and testing the network) as homogeneously as possible.

3.1 Generating spectra

Synthetic Hamilton matrices which nearly satisfy the resonance condition, i.e.,
€, = 0 in eqn (4), are particularly sensitive to the pulse shape and therefore
generate more structured and diverse spectra through nonlinear processes, here
resonant two-photon ionization, than SHMs with £; # 0. To sample the space of
input spectra as homogeneously as possible, 50% of the spectra come from SHMs
with £; = 0 and the other 50% of spectra are from SHMs with uniform £,
randomly selected in the range [—1, +1]. After training on these spectra the
network is not biased for £; around zero but works equally well for all £; in the
specified range.

We calculate n,,,. = 40 000 reference spectra from the same number of SHMs.
For each reference spectrum, we calculate n,, = 200 spectra (“fluctuating
spectra”) from noisy pulses obtained with the partial-coherence method"* using
a different noise realization for each SHM. Since solving the TDSE for a single
spectrum takes only a few seconds thanks to the highly-optimized propagation
scheme outlined in Section 2.4, this procedure can be executed despite the need
to solve about 10” TDSEs.

. — 1
For each SHM, we average over all fluctuating spectra Py(E) = . ZPkl(E)
pul 77

instead of using the individual fluctuating spectra Py (E) computed from Hy(t),
where k labels the Hamilton matrix and [ the noisy pulse. We normalize all

averaged fluctuating and reference spectra, i.e., JdE P(E) =1.

The resulting set of 40 000 averaged fluctuating spectra constitutes a major
part of the learning space to train the networks in Section 4 for the prediction of
spectra from different pulse shapes.

3.2 Parameterization of spectra and cost functions

For efficient representation we parameterize each spectrum Pi(E) in a basis of
harmonic oscillator eigenfunctions {x,},

Ttbas

Z CkXKfl (E)

k=1

Pi(E) = ; (7)
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with the vector C = {C;...C,,_} of coefficients. A basis size of np,s = 100 is required
for the averaged fluctuating spectra, while for the noise-free spectra np,s = 60 is
sufficient.

The network maps the coefficients of the fluctuating spectra to those of the
predicted underlying noise-free spectrum, {C;} — {Cy}. The goal of the training is
to minimize the difference between the predicted vector C; for the noise-free
spectrum and CE¥ of the expected reference spectrum. The coefficients allow us
to define a difference familiar from vector spaces as

1 & 2
)

b= -3 [eea

k=1

(8a)

which we use for the cost function in the network training. As a measure for the
difference of two (normalized) spectra i and j we define their “distance”

D, = [4E|P(E) - P () (sb)
and the average mutual distance
— 2
Do=—>"SN"D; 8c

within a set of ng spectra. With

ng

1
EQ= — Dk./c,c (Sd]
one can quantify the error in terms of the distance eqn (8b), of the spectrum k
from the reference spectrum k., where ¢ = 2. The label Q stands for the set of
data the error is calculated for and can assume the values “train”, “val”, or “test”
for training, validation or test data, respectively.

3.3 The training setup

The full set of learning data contains n,, = 40 000 pairs of spectra. Each pair
consists of an averaged noisy spectrum with its respective reference spectrum for
the same SHM. The full learning data set with n,, pairs is split into training

synthetic Hamilton matrices Hy '

rsingle—shot noisy spectra Py (E)
from Hy(t)

(from theory or experiment) for desired pulse form

[ spectrum for real system ]

Fig. 1 Sketch of training and use of a deep neural network with synthetic Hamilton
matrices and noisy spectra.
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(80%), validation (10%) and test (10%) data. Training corresponds mathemati-
cally to minimizing the cost function eqn (8a), with Q = train. Fig. 1 provides
a sketch of what goes into training and prediction.

Implemented with the deep-learning library KERAS," a fully connected feed-
forward artificial neural network is used to establish the mapping. It contains 5
layers with 60 neurons on each and was trained at a learning rate of 0.001 with 100
epochs, a batch size of 200 and a learning patience of 25. Each hidden layer
neuron contains a ReLU activation function.* The Adam optimizer* is used to
minimize the cost function, eqn (8a). The training success is quantified with the
error functions eqn (8a) and (8d), which both decay logarithmically with the size
of the learning data, typical for deep learning.'®"”

4 Prediction of spectra for different pulse shapes

To assess the quality of the mapping achieved with the trained networks on the
basis of the SHM learning data, we will discuss scenarios with three different
reference pulses for which we predict spectra: (i) double pulses with different time
delays T4 and peak amplitude ratios A, : A,, (ii) chirped pulses with chirp param-
eter 3, and (iii) partially coherent reference pulses with different coherence times t
according to eqn (1). We have used the network setup for all three scenarios as
described in the previous section with the same set of fluctuating spectra for
training, but paired for each SHM with reference spectra which differ to the cor-
responding above reference pulses. The fluctuating spectra used as the input of the
network have been generated with the pulses from eqn (1) with a pulse length of
T = 3 fs, a coherence time of T = 0.5 fs, central photon frequency of w« = 21 eV and
spectral intensities between 8 x 10*> W fs cm 2 and 8 x 10" W fs cm 2.

For further reference and to give an overview how successfully the trained
networks can predict spectra for the different pulse shapes from the fluctuating
spectra, we show to begin with in Fig. 2 the absolute distance errors (¢ < 2) of all
predicted spectra. Note that for double pulses, the error decreases with increasing
time-delay which is probably to be expected since it is easier to identify the time
delay if it is larger. The smallest one T4 = 4 fs, basically corresponds to a single
pulse (recall that the width of each individual pulse is T = 3 fs). Interestingly, the
sensitivity to the amplitude ratios of the double pulses is even larger than to the
time delay: the spectrum from a 1st pulse which is stronger than the 2nd one is

double pulses chirped pulses FEL pulses
T ~— 03— «—T —»
Od——T—T T T T T T T T T T T T
8 - I | | | I I I | | | I I I | | | -
w | | | | | I - |
80'3_ : f x T 4‘. : : I | | : : 1 + T
g r * | | | I ¥ * * =L | I I I | | | -
Bo2L ! | | | [ | | | | | [ ¥ | | | |
Ehe | I | | | | | I T % | I | |
r I ' | | ! I I ' | | I I I | | | |
:;01— t1:2. el w201 ]
2 : | | | | | | I [ 1 | | | |
[ I | | | | I I | | | | I I | | | 7
G 0 | [ A | | [ A | | I
LG IR I I G I S G B I AN B I G
u%@v%@u%\m//o,\na\ L2y

Fig.2 Absolute distance error eest €gn (8d), of the different predicted spectra for test data:
double pulses with time delay T4 and amplitude ratios A; : A, as indicated, chirped pules
with chirp parameter 8, and partially coherent pulses with coherence time .
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easier to predict than vice versa, with pulses of equal strength taking the middle
position in terms of the error.

The strongest sensitivity occurs for spectra from chirped pulses where the ones
with the most positive chirp (8 = +3) are twice as difficult to predict than ones
with 8 = —3. We will come back to this point later. Finally, it is surprising that
a spectrum from a partially-coherent pulse, which is naturally very “busy”, can be
identified and therefore predicted from the (averaged) fluctuating spectra, even if
the coherence time is shorter than that of the noise (z = 0.5 fs) with similar
accuracy as for longer coherence times of the reference spectrum. We will discuss
the spectra from the different pulse forms now in detail.

4.1 Prediction of spectra from double pulses

The reference pulse is here given by
fa(H) = Ny[A1G1(t + Ty4/2) + A,G(t — Ty4/2)Jcos(w=t), 9)

where Ty is the delay between the maxima of the two pulses with shape G from
eqn (1b), and respective amplitudes A;. The normalization constant Ny is used in
the same manner as in eqn (1).

Fig. 3 shows predicted spectra for exemplary double pulses with pulse shapes
indicated in gray. Comparison of black and blue curves also helps to develop
a sense for what the quantitative distance errors in Fig. 2 mean for the quality of
the predictions. The generally good agreement proves that the training of the
network was successful and has generated an accurate map.

However, the test data, although not used for training, belong to the same class
of SHM that are used for training. A more realistic test is the prediction of a 3D
helium spectrum as shown in Fig. 3 (middle), as this is similar to predicting
spectra from experimental fluctuating pulses. In general, the prediction works
very well, as one can see—only small details of the spectral structures are

Test SHM He, B, =1.6 x 10'® W-fs/em? He, E, =6.4 x 10'% W-fs/em?
2016 T 1o Foss 0 F T pilin is T 0T T grin T 3 T T
e " A A .\ i \
o A ey AN M M, M ~ N AN AN
V==t AVYs W ] D Va"au | n Vo Vo | I VY Vo A
et /
20t L 1k L Hk L 1 b L ok L Tk L 1 L 1 L 1k L 1
20/ 55T oz T T o T T T o ia T ifis T s T !
& ' . | ] A \
B A PN A A i AW o~ o~ )
= A \ my— Y Ve
5 \
720k L Tt L Tt L 1 o L Tt I dh L 1 o L ok L Tt L 1
205 T s T T ore 0 [T T s T ia T 0T T pefin T s T T
A " ! i\ A A \
o Ay A\ A vy ' i\ I i A
b0 I | S T | DTN B SR | SR | TN N ST | S L
18 18 28 8 18 2! 288 18 28 8 18 288 18 28

i
8 18 288 8 18 1§ 288
energy E [eV] energy E [eV] energy E [eV]

Fig. 3 Predicted photoelectron spectra (black) are compared to reference spectra (blue,
dashed). All spectra are normalized. The corresponding reference pulses (gray) are shown
in each panel. In each of the three figure matrices with 3 x 3 panels, time delays T4 are 4 fs,
8 fs, and 12 fs, respectively, from left to right; and from top to bottom, pulse amplitude
ratios Ayt A are1:2,1:1, and 2 : 1, respectively, see eqn (9). Left matrix: prediction for
a SHM from test data. The SHM is chosen such that £, = 3.84 x 10'® W fs cm 2 and each
prediction returns an absolute distance (humbers in the panels) Dy, cf. eqn (8b), within the
range of 30-70% in the error distribution. Middle matrix: prediction of noisy 3D helium
spectra (composed of the sum of the two relevant angular-momentum channels s and d)
through the trained network for pulses of pulse energy £, = 1.6 x 10 W fs cm™2. Right

matrix: same as middle matrix but for an energy of £, = 6.4 x 10'® W fs cm~2.
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sometimes not resolved. This is remarkable, as the shapes of the spectra from the
same reference pulses are quite different for the 1D system used for training and
the 3D helium (compare the individual equivalent panels on the left and in the
middle Fig. 3). This confirms the transferability of the network and underlines its
interpolation capability.

Predictions become worse for increasing pulse energy as shown in the right
part of Fig. 3. This is also true for the test data (not shown) but to a slightly lesser
extent. While features are still reproduced, the predicted spectra are in general
slightly too wide compared to the reference spectra.

4.2 Prediction of spectra from chirped pulses

The chirped reference pulses are parameterized by § and read

J8() = NgGg(t)cos(pp(1)), (10a)
7 2In2 ¢ ] 5
(pﬁ(l‘) = Wl + m ﬁ’ TB = 1+ ﬁ T, (10b)

with the Gaussian from eqn (1b) and T = 3 fs. Again we normalize the pulse
energy, here by means of Ng, as before in eqn (1) and (9). The predicted spectra are
shown in Fig. 4. They do not exhibit detailed structure, mostly a single peak with
different form of the shoulders and reconstruction seems to work well with the
exception of large positive chirp, where the position of the spectral peak is
systematically red shifted in the predicted spectrum consistent with the largest
error (see Fig. 2) the positively chirped spectra have.

4.3 Prediction of spectra from partially-coherent pulses

We finally will predict spectra from pulses which are themselves “noisy”, i.e.,
partially coherent and generated according to eqn (1) but for different coherence
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Fig. 4 Prediction of 3D helium spectra (black, solid) for chirped pulses, egn (10). The
reference 3D helium spectra are shown with blue dashed lines.
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Fig. 5 Prediction of 3D helium spectra (black) for partially coherent pulses (1). The
reference 3D helium spectra are shown with blue dashed lines.

times 7, typical for SASE FELs. The motivation for such reference spectra was to
see where the prediction breaks down since we had the expectation that, at least
for spectra from pulses with coherence times much shorter than the ones used for
the learning space of fluctuating spectra, the trained network would lose its
predictive capability, even more so as the spectra have quite detailed features, see
Fig. 5. However, to our surprise this is not the case, as also revealed by the errors
given in Fig. 2.

4.4 Prediction errors for different pulse shapes

Now, we are in the position to understand details of the distance errors g in
Fig. 2 for reference spectra from different pulse shapes. As one can see from Fig. 6
as a rule of thumb, the smaller the ionization probability P;,, (shown in Fig. 6 with
blue points), the smaller the diversity of spectra the pulses generate, including
reference spectra. All spectra in this section have been analyzed with networks
trained with a learning data set of the same size and a common set of input

double pulses chirped pulses FEL pulses
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Fig. 6 Properties of test reference spectra for the pulse} from Fig. 2. Average ionization
yield Pio,, (blue, right axis) and average mutual distance Dy (red, left axis).
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averaged fluctuating spectra. Therefore, one would expect that the average mutual
distance Dq, defined in eqn (8¢c), of the reference spectra is larger for a more
extended space of highly diverse spectra as compared to a smaller space of less
diverse spectra. This is indeed the case as D shown with red points in Fig. 6
reveal: they follow the trend of Pj,, for the test data. Since it is more difficult for
the network to interpolate if the available reference spectra are more distant, one
would expect larger errors, which explains the trend of the distance errors in
Fig. 2. Particularly striking is the change for chirped pulses:'® negative chirp
produces small Pj,, and in turn a moderate diversity of spectra with relatively
small D, and therefore also the smallest e For positive chirp, the exact
opposite holds. One cannot expect that ionization yield, distance of spectra and
errors are directly proportional, as the physical process leading from the pulses to
the spectra is still non-linear. For instance, long time-delays in double pulses give
rise to more diverse spectra than short time-delays. Moreover, the ¢ are for
predictions from noisy spectra. Yet, the causal chain of Pi,; — Dyest = &tese holds.

This section has shown that the trained networks can predict spectra from
widely varying pulse forms well. The effort one has to invest into the deep neural
networks for the prediction of the spectra depends on the diversity of spectra
a certain pulse form is capable of generating.

5 Single-shot noisy double pulses: simultaneous
purification of spectra and reconstruction of time-
delay

The analysis of the previous section has prepared us for the final goal of this work,
namely purifying the spectra while simultaneously extracting the correct time-
delay from spectra recorded with noisy double pulses which have an unknown
time-delay within a certain interval. This scenario is motivated by SASE XFEL
pulses,™ where the pulse is either split by a chicane for the relativistic electron
bunch, which creates the light pulse, or by situations where an XFEL pulse and
a time-delayed strong laser pulse are used together, whereby the delay between
the two pulses is characterized by a jitter from shot to shot.

We model fluctuating double pulses with noise-free double pulses and
admixture of noisy double pulses,

Jaq(t) = NaglGr(t + Tal2) + Gr(t — Ta/2)][cos(w=1) + qF(D)], (11)

where g = 0.32, 1 = 0.3 fs, Gy and F, are from eqn (1) and the time-delays Ty vary
between 2 fs and 14 fs. Hence, for this task we have to create a new learning space
of fluctuating spectra as input for the network based on fluctuating double pulses.
And again, the normalization factor Ngq ensures the required pulse energy.
Since so far we have not extracted the time-delay of the pulses from the spectra,
we verify in Section 5.1, that it is possible to identify the time-delay of double
pulses from noise-free spectra generated by those pulses. In Section 5.2 we will
address fluctuating spectra. We first determine the pulses’ time-delay T4 encoded
in single-shot spectra generated with noisy double pulses. Subsequently, we
average the single-shot spectra with identified Ty over small intervals of time-
delay (1 fs) and purify these averaged spectra. Recall, that purifying means that
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we remove the fluctuations from spectra by predicting the spectra generated from
the respective noise-free pulse forms, in the present case from the noise-free
double pulses.

5.1 Extraction of time-delay from spectra generated with double pulses

Here, we aim at constructing a network-based map to extract the time-delays T4 of
double pulses from the (noise-free) spectra the pulses fg, from eqn (11) generate.
To this end we have generated a learning data set of spectra from 20 000 SHMs,
each paired with a single double pulse f4o(¢) with delays between 2 and 14 fs. The
learning data is distributed into training, validation and test data as before (see
Section 3.3), and the network is also that of Section 3.3, but the number of
neurons on each layer is 50, the learning rate is 0.008 and the number of epochs is
200.

Fig. 7 shows the training success with the SHMs as well as the transfer of the
network to unknown 3D helium spectra. The trained network reproduces well the
delays (results scatter along the ideal red line with an error given in the inset). For
short Ty the results deviate from the ideal line since the individual pulses in the
double pulse have a width of T = 3 fs which limits the resolution towards small
time-delays. Results for the reconstructed time-delay for full 3D helium spectra

energy E [eV]

10 16 2210 16 2210 16 22
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Fig. 7 Predicted time-delays against reference time-delays for the test data. The pulse
energy is £, = 1.6 x 10 W fs cm~2. The error distribution of the time-delays for the test
data is shown in the lower inset. The red line represents error-free prediction. The trained
network is transferred to the 3D helium spectra for three time delays: 4 fs, 8 fs, and 12 fs
with the reconstructed time delays are shown as circles, and the double pulse shapes
sketched. The upper inset gives the corresponding photoelectron spectra.
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are given for Ty of 4, 8, and 12 fs, respectively, and demonstrate the transferability
of the network. The upper row shows the corresponding 3D helium spectra. Given
the similarity of these spectra for different time-delays it is remarkable that the
trained network can reliably extract the time-delays. We may conclude that we can
map out the delay of the pulse from the spectrum it has produced with the help of
the trained network.

5.2 Purification of single-shot spectra and simultaneous extraction of the
time-delay of the generating double pulse

Finally, we analyze noisy single-shot spectra with the goal to purify them as in
Section 4 and to extract the time delay of the generating double pulse as in Section
5.1, simultaneously. In order to have reasonable statistics for the map and also
reasonably different spectra for different time delays, we reconstruct from each
noisy single-shot spectrum (all for the same SHM) the time-delay but average the
spectra afterwards over small intervals (1 fs) of time-delays. Subsequently, the
averaged spectra are passed through another trained network to purify them. The
result is shown in Fig. 8. The scattered points are reconstructed time-delays col-
oured with the reference time-delays. The even change in color demonstrates that
the reconstruction of time-delays for the test data has been successful. The spectra
within 1 fs intervals of reconstructed time-delays are averaged and subsequently
purified. They are shown on the right in red along with reference spectra (black),

Ivéef [fs]

14 T T I I

—_
[\
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—
(=]
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N
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time delay 75" [fs]
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l I |
0 3000 6000 9000
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Fig. 8 Simultaneous reconstruction of time-delay and purification of noisy spectra for
a single Hamilton matrix taken from test data. Single-shot fluctuating spectra for random
time-delays are passed through a network to reconstruct the underlying time delays which
are shown as scattered points where the color represents the reference time-delay. We
consider 12 intervals of time delay in the range 2-14 fs with interval length of 1 fs. All
single-shot spectra which fall into interval of time-delay are averaged. The averaged
spectra are passed through another network which maps averaged noisy spectra to
purified ones. The predicted purified spectra (red) are compared to reference spectra
(black).
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Fig. 9 Same as Fig. 8 but for 3D helium for which the network was not trained. The
distribution of predicted time-delays shows three main peaks at 4, 8, and 12 fs. The single-
shot spectra are averaged over all spectra with time-delays in an interval of 1 fs about the
three peaks. The averaged spectra are passed through the trained network to obtain the
corresponding purified spectra shown on the right (red). The three averaged reference
spectra (black) are obtained in the same way.

averaged over the same interval of time-delays. The generally good agreement
demonstrates that reconstruction of time-delays and purification of the single-shot
spectra is possible without additional information over the single-shot spectra.

The last step is to prove that the reconstruction and purification can be
transferred to spectra unknown to the networks. To this end we take noisy single-
shot spectra of 3D helium with three well-defined time-delays and pass them
through the trained network for reconstruction of the time-delay. The scattered
points in Fig. 9 show the reconstructed time-delays. We average the corre-
sponding spectra over 1 fs around the three peak time-delays in the scattered
points and pass the averaged spectra through the purification network to arrive at
the three spectra on the right in red. They agree well with the corresponding
reference spectra, averaged over the same intervals of time-delay (black). Hence,
the trained networks should be able to reconstruct the time-delay and purify the
corresponding fluctuating experimental spectra as they are produced by SASE
FELs.

6 Conclusions

To summarize, we have devised a strategy to create maps through deep neural
networks between fluctuating nonlinear photo-ionization spectra and noise-free
spectra, and between fluctuating single-shot spectra and pulse properties. A
crucial part of this strategy is the formulation of synthetic Hamilton matrices
which describe artificial systems, similar to ones existing in reality. We use the
SHM to generate a sufficient amount of spectra for training the network. In a first
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application® we purified fluctuating spectra as typically produced by SASE FELSs
through a neural-network-based map.

Here, we have taken this mapping capability to a new level by predicting from
fluctuating spectra—which should come ultimately from experiment—the
spectra which would be obtained with specific noise-free pulses, namely double
pulses, chirped pulses and chaotic (partially-coherent) pulses. While generally the
prediction works as well as the purification (prediction) for simple Gaussian
pulses, the error analysis has revealed interesting differences for the different
pulse shapes.

In a second application we have constructed a neural-network-based map
which can extract the time-delay of double pulses from fluctuating single-shot
spectra generated by those noisy double pulses. Finally, we could demonstrate
that suitably trained networks can achieve both, purification and extraction of the
time-delay, from fluctuating single-shot spectra as typically produced by SASE
FELs. Clearly, neural networks open promising new ways to analyze particular
noisy data with a potential which has been by far not exhausted.
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