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Linking genomics and metabolomics to chart
specialized metabolic diversity

Justin J. J. van der Hooft, a Hosein Mohimani, b Anelize Bauermeister, c

Pieter C. Dorrestein, defg Katherine R. Duncan *h and Marnix H. Medema *a

Microbial and plant specialized metabolites constitute an immense chemical diversity, and play key

roles in mediating ecological interactions between organisms. Also referred to as natural products, they

have been widely applied in medicine, agriculture, cosmetic and food industries. Traditionally, the main

discovery strategies have centered around the use of activity-guided fractionation of metabolite extracts.

Increasingly, omics data is being used to complement this, as it has the potential to reduce rediscovery

rates, guide experimental work towards the most promising metabolites, and identify enzymatic

pathways that enable their biosynthetic production. In recent years, genomic and metabolomic analyses

of specialized metabolic diversity have been scaled up to study thousands of samples simultaneously.

Here, we survey data analysis technologies that facilitate the effective exploration of large genomic and

metabolomic datasets, and discuss various emerging strategies to integrate these two types of omics

data in order to further accelerate discovery.

Key learning points
1. Natural product discovery is transitioning from single strains to environmental strain collections and microbiomes, enabled by large-scale multi-omics data.
2. Network analysis of genomes and metabolomes provides a bird’s eye perspective on biosynthetic diversity and facilitates prioritizing key novel metabolites
also in relation to relevant metadata (samples, activities, phenotypes).
3. Chemical substructures and modifications of natural products can be predicted from both genome and metabolome data, but more reliably when integrating
both types of omics data.
4. Matching of metabolites to gene clusters enables producers to be identified and facilitates studies of their biosynthesis and ecological function.
5. Increasing the amount of publicly available paired multi-omics data along with additional algorithmic development will make structural characterization of
natural products high-throughput.

1. Introduction

Virtually all forms of life have the capacity to produce specific
molecules that set them apart from others, and that allow them
to cope with the distinct challenges they face in their native
environments. These specialized metabolites (also known as
natural products) facilitate a wide variety of mechanisms for
chemical warfare, communication, nutrient acquisition or stress
protection. Chemically, these metabolites belong to a diverse
range of classes, including peptides, polyketides, flavonoids,
terpenes and saccharides. The large chemical space available
and the incredible variety and dynamic nature of ecological
interactions and selective pressures have driven organisms
across the tree of life to produce the hundreds of thousands of
structurally varied metabolites that we know of today.

Naturally, this abundance has been leveraged extensively
as a valuable resource for drug discovery. Many antibiotics,
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chemotherapeutics, and other drugs are either natural pro-
ducts themselves or are inspired by them. Recently, a variety
of antibiotics have been discovered that provide a new arsenal
to combat multidrug-resistant superbugs. Additionally, natural
products have been used as crop protection agents and as
ingredients for manufacturing of foods, cosmetics, dyes, and
many other products.

Recently, another area of interest has emerged for specialized
metabolites: they are key mediators of molecular interactions in
microbiomes and function as a ‘chemical language’ that underlies

many microbiome-associated phenotypes. For example, suppres-
sion of fungal diseases by plant microbiota has been linked to the
biosynthesis of lipopeptides like thanamycin in the rhizosphere,
produced by specific strains of Pseudomonas,1 while the endo-
sphere microbiome hosts additional biosynthetic pathways that
are crucial for disease suppression.2 In the human microbiome,
staphylococci producing the nonribosomal peptide lugdunin have
been shown to impair colonization by their pathogenic relative
Staphylococcus aureus,3 while N-acyl amides produced by diverse
gut bacteria have been shown to modulate host metabolism.4
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Traditionally, the majority of natural product discovery has
been driven by bioactivity-guided fractionation of chemical
extracts from individual microbes and plants. This has
enabled the cataloguing of many thousands of metabolites
and elucidation of their structures, which provides much of
the knowledgebase on natural product diversity available today.
However, the lag in acquiring and incorporating key analytical
information and the associated high rate of rediscovery renders
this approach less effective.

With the advent of DNA sequencing, it became clear that
the genomes of natural product producing-organisms encode
Biosynthetic Gene Clusters (BGCs) for the production of many
metabolites that had never been observed in the laboratory. In
bacteria and fungi, the majority of biosynthetic pathways are
encoded in BGCs; in plants, a considerable number of pathways
(but clearly not all) show signs of genomic clustering as well.
These observations led to the emergence of genome mining as
a technology to identify the biosynthetic pathways for both
known and unknown metabolites.5

Additionally, methodological advances in untargeted meta-
bolomics and data analysis of tandem mass-spectrometric
(MS/MS) data have enabled comprehensive analysis of molecular
components in metabolic extracts.6 This has made it possible
to identify natural products in complex extracts, which would
otherwise have remained ‘hidden’. In microbiomes, these develop-
ments have contributed greatly to the identification of metabolites
for which it would be very hard to isolate sufficient quantities for
structure elucidation by classical approaches.

Since then, the development of technologies for genomic
and metabolomic data acquisition as well as computational
tools for their analysis has accelerated rapidly. Thus, driven by
these advances, the starting point and scale of natural product

discovery is now shifting from single organisms to collections
of many organisms, as well as natural communities such as
microbiomes. It is becoming increasingly feasible to acquire
metabolomics data for a large series of bacterial strains7 or
plants.8 Similarly, genome sequencing and assembly technolo-
gies have undergone several successive revolutions, which has
allowed the sequencing of thousands of genomes9 and the
reconstruction of hundreds of thousands of draft genome
assemblies from metagenomes (ref. 10 and references therein).

In recent years, our labs and others have developed tools to
analyze such large-scale genomic and metabolomic data from
a bird’s eye perspective, through computational networking
approaches that facilitate visualization and analysis of data
from hundreds or thousands of organisms,11,12 and through
algorithms that predict chemical (sub)structures from omics
data. These advances are unlocking a range of potential new
approaches to not only mine genomes and metabolomes at
large scales separately, but also in an integrated manner. In this
tutorial review, we will outline the key technologies that have
been developed for genome and metabolome mining, and
present our vision on how these can be combined in the future
for integrative omics-based discovery of metabolites and their
BGCs, elucidation of natural product structures and identifi-
cation of their biological activities and ecological functions.

2. Genome mining

The process of genome mining (Fig. 1) entails a number of
steps, including genome assembly and annotation, the identifi-
cation of biosynthetic genes and gene clusters, prediction of
natural product structures from sequence, and comparative

Katherine R. Duncan

Katherine Duncan is an Assistant
Professor (Chancellor’s Fellow) in
Drug Discovery at the University
of Strathclyde. She obtained a
Chemistry MChem (University of
Aberdeen) with International
Placement (Florida Atlantic
University) in 2005. After three
years in industry, she completed
a PhD in Biomedical Sciences
(University of Prince Edward
Island, 2012, international
scholarship) followed by two
Postdoctoral Fellowships at

Scripps Institution of Oceanography, UCSD in Marine
Biomedicine and at The Scottish Marine Institute in Marine
Biotechnology. In 2016 she started her own research group at the
University of Strathclyde, studying marine microbial natural
products with a focus on characterizing the biological and
environmental boundaries of microbial metabolism to accelerate
antibiotic discovery from marine microorganisms.

Marnix H. Medema

Marnix Medema is an Assistant
Professor of Bioinformatics at
Wageningen University, The
Netherlands. He obtained a
Biology BSc (Radboud University
Nijmegen, 2006) and a
Biomolecular Sciences MSc
(University of Groningen, 2008).
In 2013, he completed his PhD
with Eriko Takano and Rainer
Breitling in Groningen; during
this period, he was also a
visiting fellow with Michael
Fischbach at the University of

California, San Francisco. Following a postdoc at the Max Planck
Institute for Marine Microbiology in Bremen, Germany, he joined
Wageningen University in 2015. There, his group develops
computational methodologies to unravel natural product
biosynthesis using omics data, and applies these methods to the
study of molecular interactions in microbiomes.

Chem Soc Rev Tutorial Review

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

2 
 2

02
0.

 D
ow

nl
oa

de
d 

on
 1

3-
09

-2
4 

01
.3

3.
11

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d0cs00162g


3300 | Chem. Soc. Rev., 2020, 49, 3297--3314 This journal is©The Royal Society of Chemistry 2020

genomic analysis to identify similarities and differences between
organisms.

Assembled and annotated genome sequences normally con-
stitute the raw material for genome mining. It is important to
realize that the quality of the assembly and annotation can have
major effects on the outcome of any genome-based analysis.
For example, in ‘fragmented’ genome assemblies containing
many small contigs, BGCs are likely to be broken up into many
pieces across contigs. In fact, due to their repetitive organiza-
tion, genes encoding modular polyketide synthase (PKS) and
nonribosomal synthetase (NRPS) assembly lines are very often
localized at contig breaks. Frequently, some of the gene cluster
pieces will be on contigs that are so small that they are not
picked up by BGC identification algorithms.

Obtaining fully contiguous BGC sequences from metagenome
data is particularly challenging. While microbial communities
are clearly an untapped resource for natural product discovery, it
is difficult to assemble an unorganized pool of next-generation
sequencing reads from hundreds or thousands of—sometimes
highly similar—organisms into contigs that each correspond to
regions from the same source genome. BiosyntheticSPAdes13 is a
metagenome assembler specialized for the assembly of BGCs
from metagenomes, and utilizes the structure of the assembly

graph, which provides a clue on how to combine multiple
contigs into segments encoding long BGCs. On BGCs from the
MiBIG dataset, BiosyntheticSPAdes correctly assembled roughly
twice more BGCs into a single contig compared to previous
assembly algorithms.

Besides the contiguity of assemblies, their accuracy is of
course at least equally important. Misassemblies regularly
occur, especially when assembling genomes with low-coverage
short-read data. When this happens within a BGC, it can for
example lead to the skipping or ‘duplication’ of NRPS or PKS
modules, especially when they are highly similar in sequence.
Alternatively, it can lead to ‘swaps’ that obscure the true order
of genes or protein domains. Sometimes, BGCs are broken up
into separate pieces that appear to be located in different
genomic regions. Long-read technologies provided by Pacific
Biosciences and Oxford Nanopore Technologies have their own
problems, as higher error rates can sometimes lead to the
introduction of spurious frameshifts that break up genes into
multiple pieces or lead to annotation of premature stops.

After assembly, the annotation of the start and stop coordi-
nates of genes within the genome constitutes a critical step.
For bacterial genomes, this is largely a solved problem, with
modern gene prediction tools being able to identify B99% of

Fig. 1 Computational approaches to mine genomes for metabolic diversity. (a) Biosynthetic Gene Clusters (BGCs) can be automatically identified in
genome sequences using antiSMASH or related tools. Subsequently, they can be dereplicated using databases for BGCs of known function, such as
MIBiG. Sequencing similarity networking can identify groups of similar BGCs across large datasets; the grouping of reference BGCs can aid to annotate
the resulting gene cluster families (GCFs). Two strategies can be employed to predict (partial) chemical structures from these gene clusters:
(b) monomers of peptides and polyketides, along with their order, can be predicted using machine learning algorithms for substrate specificity
prediction in adenylation (A) domains of nonribosomal peptide synthetases (NRPSs) or acyltransferase (AT) domains of polyketide synthases, combined
with the analysis of the domain architecture of the whole enzymatic assembly line. (c) Identification of sub-clusters that are known to be responsible for
the biosynthesis of specific chemical moieties (e.g., a deoxysugar) or chemical modification (e.g., a methylhydroxylation) can be used to predict additional
structural features of the metabolic product(s) of a BGC.
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genes, and with correct start sites for 490% of them. Still, there
are cases when genome annotations can still miss crucial genes.
For example, biosynthetic pathways for ribosomally synthesized
and posttranslationally modified peptides (RiPPs) often involve
tiny peptide precursor-encoding genes that can be as small as
20–30 base pairs; these genes are often missed by even the best
gene prediction algorithms. For this reason, RiPP genome
mining algorithms like RODEO14 scan the six-frame translation
of regions annotated as ‘intergenic’ within prioritized genomic
loci to find such short genes. In fungi, plants and most other
eukaryotes, the presence of introns makes gene prediction even
more challenging. For these organisms, mapping transcriptome
data to the genomes is often required to identify coding
sequences accurately. However, since many genes involved in
specialized metabolism are not expressed under typical condi-
tions, these genes suffer from frequent misannotation. This can
be partly solved by using pooled transcriptome samples from a
variety of biotic and abiotic stress conditions.

Several tools have been developed for the identification of
BGCs in genome sequences. Among these, antiSMASH, for
example, identifies BGCs in bacterial and fungal genomes by
a rule-based system that looks for specific combinations of
enzymatic domains (detected using profile Hidden Markov
Models [pHMMs]) being encoded within the same genomic
neighbourhood. It currently contains detection rules for 52
different classes of BGCs, which have all undergone careful
manual curation.15 The concept was extended to mining plant
genomes as well, albeit with slightly different types of rules, in
order to deal with distinguishing real gene clusters from
tandem repeats that are commonly found in plant genomes.16

For publicly available bacterial genomes and metagenomes,
pre-computed antiSMASH runs are available through the
antiSMASH-DB and IMG-ABC databases;17,18 this not only
averts the need to wait for antiSMASH web servers to analyze
these genomes, but also facilitates the possibility to search all
genomes for BGCs with specific characteristics of interest.

In the past decades, many BGCs have been experimentally
linked to specific natural products with characterized chemical
structures. To enable efficient access to this knowledge, a
community standard was introduced: the Minimum Informa-
tion about a Biosynthetic Gene cluster (MIBiG).19 This standard
covers a range of metadata, including the genomic coordinates
of the BGC, the chemical structure of its product(s), but also
e.g. the functions of enzymes encoded in the cluster. Cross-links
are also provided with the Natural Products Atlas (NPAtlas),20

a database of microbial natural product structures, and the
‘Global Natural Product Social molecular networking’ (GNPS)
knowledgebase that stores metabolomic data (for more discus-
sion, see next section).11 Because all MIBiG data are stored
according to a standardized ontology, they can easily be
searched, and the dataset can be used as reference data for
annotation purposes; within antiSMASH, this allows identifying
which BGCs are highly similar (and likely functionally equivalent)
to a BGC of known function (Fig. 1a). All MIBiG data are stored in
an online data repository, which currently contains around 2000
validated gene cluster–molecule pairs.21

Still, given the enormous biosynthetic diversity found in
nature, the vast majority of BGCs in publicly available genomes
will not be closely related to any MIBiG reference gene cluster.
Several computational methods have emerged that allow pre-
dicting the (core) chemical structures of their products de novo.
These methods are guided by mechanistic insight into the
enzymatic mechanisms involved in producing these metabo-
lites. For example, modular PKSs and NRPSs constitute an
‘assembly line’ comprised of enzymatic modules that each
integrate a monomer (e.g., an amino acid) into a growing chain
that is released at the end, before being cyclized and/or tailored
through additional modifying enzymes. The modules of these
PKSs and NRPSs contain specific domains that are involved in
selecting which monomers are incorporated: acyltransferase
(AT) domains for PKSs and adenylation (A) domains for NRPSs.
The residues lining their active sites largely confer this substrate
specificity. Hence, various algorithms, ranging from simple motif
matching to sophisticated machine-learning models, have been
developed to predict substrate specificities from sequence infor-
mation (Fig. 1b). SANDPUMA, for example, predicts A domain
specificities through phylogenetic, heuristic motif-matching,
support-vector machine and pHMM algorithms, and then uses
ensemble supervised machine learning to combine these into a
consensus prediction.22 Combining individual module-level pre-
dictions, tools like antiSMASH15 and PRISM23 then provide a
prediction of the sequence of monomers that are incorporated
into the core polyketide or peptide scaffold. PRISM also attempts
to predict post-assembly-line cyclization and tailoring reactions,
by e.g. providing all combinatorial possibilities of reactions that
are chemically feasible, given the initial predicted core scaffold.
This often leads to large combinatorial explosions of possibilities,
however, and effective methods to distinguish the most likely
actual structures from less likely ones based on sequence data
alone have not yet been reported. For BGCs that are not closely
related to gene clusters with known products, predicting the full
structure of their products is very challenging, and predicting a
core scaffold and/or a list of predicted chemical features and
modifications from sequence will often be more realistic. This
is illustrated by the fact that for most BGC classes outside
modular PKS and NRPS biosynthetic systems, few structure
prediction tools exist yet, even for assessing the core scaffold.
Nonetheless, prediction of chemical features can also be done
without attempting to predict the full structure, e.g. through the
identification of sub-clusters within BGC: groups of genes that
occur across multiple different BGCs and in each of these
contexts encode the biosynthesis of a specific substructure that
is part of the final products of each of these BGCs (Fig. 1c).
AntiSMASH identifies such sub-clusters through comparative
genomic analysis with annotated sub-clusters of known func-
tions from reference BGCs, but recently, an initial method
for de novo identification of sub-clusters based on statistical
association of gene families across BGCs has also been
established.24 The fact that even sub-clusters that are not
functionally annotated are likely responsible for the production
of specific chemical substructures opens up interesting oppor-
tunities for matching with metabolomic data.
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The upscaling of (meta)genome sequencing has led to
hundreds of thousands of genomes being sequenced and/or
being reconstructed from metagenomes. Given the enormous
diversity of BGCs across these genomes, this provides the
potential for expanding genome mining endeavors to unprece-
dented proportions. Yet, ‘traditional’ analyses of individual
genomes using e.g. antiSMASH are not suitable for this kind
of analysis, as manually vetting thousands of outputs and
predictions for the corresponding BGCs would take years. For
this reason, sequence similarity networking approaches have
been developed that facilitate systematically mapping relation-
ships between thousands of BGCs at once, and grouping them
into gene cluster families (GCFs): sets of BGCs with similar
gene content that encode the production of identical or highly
similar molecules. This type of approach, originally developed
in parallel by multiple research groups (reviewed in ref. 5), has
recently been formalized, accelerated and streamlined in the
BiG-SCAPE software12 (Fig. 1a). BiG-SCAPE takes as input BGCs
directly taken from antiSMASH and MIBiG, and uses optimized
combinations of various metrics to group BGCs at multiple
levels. Specifically, it includes measures for the degree to which
protein domains are shared between a pair of BGCs, synteny
conservation and amino acid sequence identity. The resulting
interactive network visualization makes it possible to instantly
identify GCFs with known members from MIBiG, which may
lead to the identification of BGCs for novel congeners, or
GCFs with no MIBiG reference BGCs, which may represent bio-
synthetic pathways that are novel or have gone unnoticed by
researchers in the field. The potential of this principle
was shown previously by Cimermancic et al., who identified
taxonomically widespread BGCs for aryl polyenes that are
found in thousands of bacterial species but had been almost
entirely overlooked.25 On top of the sequence similarity
networking, phylogenetic analysis offers an additional technique
to map biosynthetic diversity; the CORASON algorithm, which
has also been integrated with BiG-SCAPE, makes it straight-
forward to construct multi-locus phylogenies of BGCs within
and across GCFs; this allows systematically mapping evolved
biosynthetic variation by identifying, e.g., clade-specific variation
in BGC content in the form of unique tailoring enzymes or
unique changes to the core scaffold biosynthetic enzymes.
Navarro-Muñoz et al. showed the potential of the combined
use of BiG-SCAPE and CORASON to this end, by identifying
three novel clades of detoxin BGCs that encoded specific
modifications to this natural product scaffold.12

It should be noted that the sequence similarity networking
technique comes with several caveats. For example, networks
can be constructed at a range of different cut-offs. Many of
these cut-offs produce networks that ‘make sense’, but each of
them tell a different story. When the goal is to identify a group
of BGCs that should be linked to one specific molecule, a
stricter threshold would be required than in attempts to link
a group of BGCs to a class of molecules, or to a biological
activity or microbiome-associated phenotype of interest. In
many cases, it is therefore a good practice to repeat the analysis
at multiple cut-offs, and compare the resulting networks and

GCF groupings carefully. This gives a more complete picture
than a single cut-off will, as choosing a single cut-off will always
carry a large degree of arbitrariness.

An additional consideration is how to define GCFs from the
graph. Taking complete connected components as GCFs
has the danger of combining unrelated BGCs into one family:
e.g., if gene cluster A is related to the first half of gene cluster B
and the second half of gene cluster B is related to gene cluster C,
cluster A may not have any similarity to cluster C. Yet, performing
graph clustering on the network, as BiG-SCAPE does, has the
danger that large groups of closely related gene clusters may be
forced into multiple individual families. BiG-SCAPE partly
addresses this by grouping GCFs into a higher-level organization,
gene cluster clans, which comprise multiple related GCFs.
Using these clan annotations or using GCF annotations
at different cut-offs can remedy problems due to excessive
‘splitting’ behaviour, when attempting to match sets of gene
clusters to metabolites or phenotypes.

Furthermore, it is important to note that most current BGC
identification algorithms have not been designed to predict the
exact borders of BGCs. AntiSMASH, for example, takes a greedy
approach and extends the BGC region upstream and down-
stream of the core biosynthetic genes to ‘play it safe’ and make
sure that no important functional enzyme-coding genes are
missed. When the extension region is relatively large compared
to the actual BGC, however, this can lead to BGCs being
grouped into different GCFs (at certain cut-offs) when the BGCs
lie in different genomic contexts across organisms.

Fragmented (meta)genome assemblies with partial BGCs
can also be problematic. BiG-SCAPE provides a glocal align-
ment mode that is able to often still match partial gene clusters
to their corresponding regions within full BGCs; thus, it is
frequently still able to link partial to corresponding complete
BGCs within the network. However, for very small contigs, even
this mode may fail to do so.

The application of gene cluster networking approaches to
large genomic datasets has made clear that vast numbers of
GCFs of unknown function exist for which it is very difficult to
estimate the structures or functions of their products. While, as
mentioned above, genome mining tools have enabled predic-
tion of the molecular structures of some BGC products, these
predictions remain error-prone, especially for unusual mono-
mers and rare modifications from less-studied organisms. This
is due to the fact that limited training data is available for many
enzyme families, while enzyme function can be very diverse and
may evolve rapidly and dynamically. Integration with metabolome
data has important potential to improve current predictive
capacities, as metabolomics data could be used to error-correct
genome-based predictions of chemical (sub)structures,26 and
thus learn from the data. Additionally, metabolome data can
be used to link BGCs and GCFs to specific molecules, and thus
dereplicate and prioritize gene clusters for experimental char-
acterization not only based on genomic features, but also based
on chemical novelty that can be predicted from MS/MS data
analysis. This will help shed light on questions regarding
‘silent’ or ‘cryptic’ gene clusters as well: are the products of
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so many BGCs not known because they are not expressed under
the conditions studied, or simply because they do not have
biological activities that are being screened for?

3. Metabolome mining

Specialized metabolites have high structural diversity, a result
of evolutionary adaptation to a multitude of abiotic and biotic
challenges. Furthermore, considerable metabolic variation can
arise from individual pathways, as the production of specialized
metabolites is influenced by a suite of complex processes. These
may include dynamic transcriptional regulation of biosynthetic
enzyme-encoding genes as well as enzymatic promiscuity in
substrate acceptance or regioselectivity and substrate availability
within the cell and environment. Genome sequencing has
revealed that microorganisms often have a higher biosynthetic
potential than the number of metabolites that has been observed
in the laboratory. This suggests significant potential for discovery
of chemical novelty. In order to identify new metabolites, there is
a need for technological advances in metabolomic measure-
ments, as well as for data methods (analysis, curation, storage
and standardisation) that can effectively survey and compare
larger sets of species, samples and conditions.

Advances in method development and highly sensitive ana-
lytical instrumentation, especially Mass Spectrometry (MS),
have allowed metabolite extracts of increasing complexity to
be investigated. As a result, MS-based metabolomic technolo-
gies have been widely applied in the field of natural products.
Development of new computational tools to highlight and
identify target metabolites of interest has further aided our
understanding of these complex systems. The scale of the
data generated using MS-based metabolomics has fuelled the
development of automated analysis methods to compare and
identify metabolites. However, the chemical complexity and
diversity of natural product extracts often makes assigning
structural information to metabolomics signals (metabolite
annotation) and structural elucidation of metabolites (metabolite
identification) very challenging processes. In mass spectrometry-
based metabolomics studies, multiple ways of data acquisition
are possible, each with their own advantages and disadvantages.
Typically, the aim is to capture the entire metabolome (using
full scan or ‘MS1’ mode), which is advantageous to accurately
quantify metabolites.

However, it is often difficult to reliably annotate metabolites
from MS1 data for a variety of reasons, such as the fact that
multiple distinct metabolites often share the same molecular
formula and mass. Acquiring fragmentation spectra of meta-
bolites (MS/MS or tandem MS mode, Fig. 2a) has distinct
advantages to annotate and identify metabolites. These MS/MS
spectra can be regarded as bar codes or fingerprints of meta-
bolites, and several software tools have been developed to exploit
this structural information. An initial step is usually to compare
experimental MS/MS spectra to library spectra (Fig. 2b) to detect
known metabolites, or analogues thereof, a process also known
as dereplication. The reliability of this matching procedure is

dependent on many factors that include experimental data
quality and spectral database content that differs from database
to database. It is therefore wise to check the results across various
databases. Moreover, although spectral libraries are currently
growing, their contents are far from completely covering the
natural product metabolome. For example, GNPS spectral libraries
currently contain MS/MS reference spectra for about 2.5% of
known natural products. Thus, during such annotation efforts,
one has to keep in mind that if presented with a yet unknown
metabolite that is spectrometrically very similar to those of multi-
ple metabolites or stereoisomers present in libraries, one needs to
report the possible candidate structure space rather than a single
candidate. A single extract can contain thousands of metabolites,
with experiments routinely consisting of hundreds of samples.
It is thus unsurprising that for most of those metabolites there
is no reference data available, leaving many metabolomics
signals unmatched. Therefore, despite the wealth of untargeted
MS data generated, annotation remains a challenge. In practice,
less than five percent of the total chemical entities in a sample
can be reliably annotated to the structural level.27

To facilitate exploratory data analysis, new tools have been
developed that aim to group structurally-related metabolites
together based on the spectral similarity of their fragmentation
spectra (Fig. 2). Here, Global Natural Product Social (GNPS)
molecular networking improved spectral comparison within
and across samples.11 In general, metabolites with a similar
chemical architecture yield similar fragmentation spectra.
Molecular networking groups parent ions (represented by
nodes) by fragmentation pattern similarity (represented by
edges) to form Molecular Families (MFs) of related metabolites
(Fig. 2c). This facilitates analysis of large data sets, also across
multiple organisms, as molecular networks can be used to find
metabolites related to a known molecule of interest, or to
correlate the presence of a MF to, e.g., a biological activity.
Here, it is important to take into account that approaches that
are dependent on a network structure (i.e. the formation of MFs
from fragmentation spectra, analogous to grouping BGCs into
GCFs) have their caveats – which are similar to those discussed
in the genome mining section. Briefly, choosing appropriate
thresholds for networking is non-trivial, the quality of the
network reflects the quality of the input data, and the para-
meters selected to define families influence the outcome. To
connect two metabolites based on their mass fragmentation
spectra, it is important to consider which distance metrics (i.e.
spectral similarity scoring system) to use, as in any clustering
analysis. For example, a scoring method may or may not
account for differences between the two parent ions of the
spectral pair. Furthermore, the threshold to enable connection
of metabolites in the molecular network needs to be critically
considered, as more stringent thresholds will lead to the
formation of smaller MFs, whereas more lenient thresholds
will lead to larger MFs.

During the last five years, GNPS11 has grown to a mass
spectrometry ecosystem: a free, public, web-based platform,
where it is possible to upload and store raw or processed data sets
(e.g., in an open data format such as mzML, mzXML or MGF)
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and analyze them with several different available statistical and
annotation tools. GNPS provides an online repository for public
deposition/retrieval and archival called the Mass Spectrometry
Interactive Virtual Environment (MassIVE) data repository.
Here, researchers can search for related public datasets and

either download or integrate these into a current workspace for
reanalysis with different parameters or newly available tools,
integration into molecular networks including their own data,
or comparative analyses. If the spectral data is publicly avail-
able, it is straight-forward to re-analyze data and notifications

Fig. 2 Molecular networking technologies to chart metabolic diversity. (a) In metabolomics, crude microbial extracts are analyzed by untargeted
LC-MS/MS, from which the most intense ions detected in MS1 are selected and fragmented to acquire MS/MS spectral data. (b) In spectral library search,
each MS/MS spectrum from the dataset is searched against a spectral library in order to find a good spectral match. (c) Molecular network organizes MS/MS
datasets by spectral similarity (cosine score), in which spectra with high similarities are grouped together, forming molecular networks. (d) MS2LDA
recognizes co-occurrence of ions related to structural motifs; this substructural information can be combined with annotations from other in silico tools
(NAP, DEREPLICATOR, ClassyFire) (e) MolNetEnhancer integrates outputs from these tools to annotate substructures and classify the chemical classes
present in the investigated dataset. (f) DEREPLICATOR is an in silico tool able to annotate known peptidic natural products. (g) NAP – Network Annotation
Propagation makes use of the network topology and propagates the annotation from a spectral library match (based on in silico annotation tools) through
the spectral network to improve the annotation of analogs by reranking the most plausible candidate structure based on overlapping structural fingerprints.
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can be set up: every time when a new dataset with a similar
chemical profile is submitted, when new annotations are
submitted, or when new spectral matches are found to the
crowdsourced GNPS curated spectral libraries, the researcher
receives a message. This interactivity facilitates a global shared
data community (i.e., the ‘‘living data’’ concept), which can
greatly enhance both the availability and number of annotated
features, ultimately aiding the metabolomic identification and
continuous learning about a data set that is deposited publicly.

Once the researcher has one target compound (MS/MS
spectrum) of interest or relevance, it is possible to query for
its presence in all the GNPS public datasets through MASST,
akin to performing an NCBI BLAST search with a genomic
sequence.28 In GNPS, the researcher can also compare a public
dataset to their own data, thanks to the development of ReDU,
which brings standardization for the metadata associated to
the dataset.29 ReDU makes it possible to select a specific subset
of the public data based on fixed ontology terms, thereby
overcoming difficulties in matching metadata across different
datasets. For instance, the same bacterial species may be
deposited in the repository with different names, such as
Salinispora arenicola, S. arenicola, Salinispora, marine bacteria,
etc. With 42900 well-documented datasets of microbial origin,
ReDU will undoubtedly contribute to natural product discovery
by allowing researchers to find the same or related metabolites
across all microbial data – and thereby getting an idea of a
metabolite’s chemical novelty and distribution over known and
measured organisms.

Besides GNPS, several other metabolomics tools and plat-
forms are available as well for data processing, analysis, and
sharing (for the underlying publications, see ref. 30 and refer-
ences therein). MS-DIAL (with MS-Finder) and MzMine have
grown into platforms with active user base and functionalities
from initial processing up to library matching and annotation
of unknown signals. Another platform with such capabilities is
XCMS online, from where MetLin is available as well: MetLin is
currently the largest spectral library that can be searched in.
Finally, next to GNPS-MassIVE, MetabolomicsWorkbench
and MetaboLights each constitute an evolving metabolomics
repository that promotes community sharing of both mass
spectrometry-based and NMR-based metabolomics data. From
its initial launch, MetaboLights has adhered to ontologies and
is now also offering an increasing suite of analysis tools to
make use of the public metabolomics data.31

Spectral matching and molecular networking have been
shown to assist in annotating and organizing metabolomics
datasets; however, for many mass features in a molecular net-
work library, matching does not provide any structural informa-
tion. In the past decade, several in silico annotation approaches
have been developed to provide insights into the chemical
nature of metabolites which cannot be annotated using library
matching. Such in silico tools typically result in a ranked list of
possible candidate structures from predicted MS/MS spectra or
from public compound databases. Alternatively, they provide
substructure annotations or chemical class annotations. As a
result, they greatly assist in assessing chemical novelty of natural

extracts, since known scaffolds or classes can be assigned to
mass features to inform prioritization.

One class of methods exploits the fact that specialised
metabolites usually consist of several building blocks assembled
by biosynthetic machinery. Recognising these building blocks
directly from metabolomics data represents an appealing
strategy to elucidate the natural product. In recent years, several
approaches have been developed in this area.32,33 For example,
the MS2LDA tool identifies parts of metabolites (substructures)
in untargeted datasets through the unsupervised detection of
co-occurring molecular fragments using a text mining inspired
algorithm (Fig. 2d).32 The resulting mass fragment patterns
are termed Mass2Motifs, and they require annotation by
researchers. MS2LDA has been applied to extracts from plants,
fungi, and bacteria. From each of these datasets, tens of
Mass2Motifs were annotated with substructure information
culminating in several hundred annotated substructure patterns.
Recently, MotifDB (http://ms2lda.org/motifdb/) was built to
capture this expert knowledge, enabling easy reuse. Where some
Mass2Motifs consist of specific mass fragments or neutral losses
that uniquely match to MS/MS spectra in experimental data,
other Mass2Motifs may contain more widely occurring mass
fragments; in such cases, their presence in experimental data
should be manually validated. In addition, in various sample
types, Mass2Motifs could represent different isomeric substruc-
tures and care should be taken with transferring Mass2Motif
annotations across very different sample types. Different chem-
istry will result in different sets of mass fragments and neutral
losses that the user will have to structurally annotate to provide a
(bio)chemical interpretation. To analyse substructures in context
of metabolite diversity, annotations from MS2LDA can be used to
annotate molecular networks; the MolNetEnhancer software
facilitates this (Fig. 2e)34 and thereby eases manual validation
of Mass2Motif presence and annotations.

A number of other tools, including MetFrag and MAGMa,
use candidates from structure databases that are subsequently
ranked based on in silico fragmentation, matching experi-
mental mass fragments, resulting in scores for each candidate
– also referred to as the combinatorial approach.35 This
method has some limitations as fragment ions generated from
rearrangement reactions, such as McLafferty rearrangements
that occur in natural product classes such as flavonoids, cannot
be assigned to a structural feature. Other approaches use
machine learning. For example, CSI:FingerID, enables the
generation of fragmentation trees to match MS/MS spectra to
candidate structures using support vector machines. In the case
of spectral prediction methods, such as CFM:ID, fragmentation
spectra of known metabolites are used to computationally
learn fragmentation patterns of a large set of structures.
Subsequently, those in silico created spectra are matched to
experimental MS/MS data. Whilst this has worked for a number
of small (human) metabolites, the spectral prediction of larger
natural products remains too challenging to derive high-quality
annotations through spectral matching. One reason is the
relatively low number of natural products with reference
MS/MS data to train an appropriate spectral prediction model.
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Another strategy is to consider the metadata, for example, the
location of the molecules or by applying taxonomically
informed scoring to improve annotation. Altogether, in silico
annotation tools often reduce the analysis time needed to
assign structural information to metabolomics signals, while
minimizing the number of possible options for validation.

For specific classes of natural products, dedicated approaches
have been developed that dereplicate metabolites by using inno-
vative strategies to match MS/MS-based fragments to fragment
patterns predicted from chemical structure databases. For exam-
ple, DEREPLICATOR (Fig. 2f) systematically links structures from
a large peptidic natural products database to mass fragmentation
spectra by comparison with theoretical spectra generated based
on specific in silico fragmentation rules.36 Statistical assessment of
the results is provided by also matching to a decoy database that
contains non-existent peptides with similar amino acid composi-
tions. Recently, DEREPLICATOR+ was launched, which extended
this annotation strategy to polyketides, flavonoids, terpenes, and
other classes of natural products.37 As even large peptidic data-
bases are incomplete, the VarQuest tool was employed to facilitate
modification-tolerant searches for peptidic structures and to
predict where these modifications are located on the peptide
scaffold.38 This allowed the annotation of almost 20 000 peptide
variants in publicly available data.

The combination of library matches, dereplication results
and substructure predictions can be utilized to annotate mole-
cular networks to a substantial degree. Recently developed
methods to do so include Network Annotation Propagation
(NAP)39 (Fig. 2g) which utilizes network topology to increase
the number of relevant candidate structures for metabolomics
signals, and MolNetEnhancer (Fig. 2e), which provides fine-grained
molecular details by showing the presence of substructure patterns
(Fig. 2d) as well as a higher-level chemical overview of the data
through chemical class annotations of candidate structures in the
context of their MFs (Fig. 2e).34 Such enhanced molecular networks
facilitate rapid ways of exploring metabolite space across large
datasets, by providing a global overview of chemical diversity.

Many annotation tools are dependent on candidate struc-
tures present in spectral databases. However, for quite a few
mass signals no relevant candidates can be found – or even
none at all. The above introduced CFM-ID is able to predict
spectra from structures and thereby expands the search space
for candidate structures. Recently, MetWork was established,
which combines the network structure of molecular networks
with the spectral predictions of CFM-ID, which yield informative
structural information. MetWork ‘imagines’ which chemical
variants could be represented by nodes based on a number of
annotated molecules (using a set of appropriate sample-specific
reaction rules). This is then tested by matching these variants to
their theoretical spectra.40

The above tools are all dependent on measured LC-MS/MS
spectral metabolomics data. These data files consist of inter-
leaved full scan LC-MS spectra capturing the samples’ meta-
bolic content and mass spectrometry fragmentation spectra
where typically a subset of metabolites is fragmented. Whilst
metabolomics aims to capture all metabolites of an organism,

in practice this is impossible due to various steps during a
typical (untargeted) metabolomics workflow, in particular
the extraction and mass spectrometry analysis settings. For
example, more polar solvents will extract the more polar
metabolites from a sample, including sugars and charged
molecules, but excluding most apolar metabolites such as
lipids (and vice versa for apolar solvents). Furthermore, mass
spectrometry analyzers cannot collect decent spectra across the
entire m/z domain at the same sensitivity and a mass window
needs to be provided; thereby focusing on either the smaller
m/z values or the larger ones. In addition, the quality of MS/MS
spectra (i.e., how many mass fragments are visible and how
abundant are they?) is dependent on how well metabolites
fragment under the experimental conditions. Indeed, some
compound classes (e.g., polyketides) are more difficult to break
than others (e.g., peptides and saccharides) due to the nature
of the bonds that connect the underlying monomers. Thus,
differential data acquisition settings and various amounts of
background noise, for example due to interfering mass features
that are co-isolated in the fragmentation cell, may hamper the
correct matching of experimental spectra to library spectra.
Moreover, to detect a metabolite in the mass spectrometer, the
metabolite needs to be ionised. However, not all metabolites
ionise that easily, and for some metabolite classes, other
analytical detection techniques will need to be employed.
Available alternatives to mass spectrometry are ultraviolet
(UV) absorption to better detect chromophores in natural
products, and nuclear magnetic resonance (NMR) spectro-
scopy, which can provide more detailed structural information
at the cost of being less sensitive than mass spectrometry is.

Data quality plays a large role in GNPS molecular networking
as well, especially as mass spectrometry fragmentation data is
typically generated by selecting a window of masses rather
than just one metabolite mass. Thus, often, ‘‘chimeric’’ MS/MS
spectra are obtained that contain mass fragments from two or
more fragmented metabolites. Such chimeric spectra can give
rise to false connections in molecular networks. Virtually all
mass spectra contain noise, and when this is substantial, it
affects spectral similarity scores – typically in a negative manner,
as noise is random and not shared by a spectral pair, resulting in
a lower spectral score and no connection. In recent years,
denoising strategies have been proposed, several of which are
available in the GNPS platform.

From the perspective of metabolomics, much can be gained
by attempting further integration with genomic (and transcrip-
tomic) data. For example, linking BGCs to metabolites to
understand biosynthetic pathways and integrate chemical
class/structural information based on genome and metabolome
data. Specifically, there is major potential in using genome-
based predictions to inform chemical structure elucidation, in
order to link genes to metabolites. Furthermore, linking BGCs
to transcriptomics data can increase our understanding of
which conditions lead to the production of different subsets of
chemistry. The application of these integrated omics datasets
to biology-driven questions including phylogeny, ecological
function and understanding microbial (and host–microbe)
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interactions provides an exciting opportunity. In the next sec-
tion, we will explore how these and other approaches can be
leveraged for metabologenomic integration.

4. Metabologenomic integration

Linking of information across datasets is useful, as it enables
structural and functional annotation. The term ‘metabologe-
nomics’ has been coined to encompass the methodology used to
integrate these complex datasets.41 Whilst functional annotations
in genomics and metabolomics are increasingly present in data-
bases to which new experimental data can be matched, it has been
estimated that approximately 50% of the proteins have reliable
functional annotations, whereas the total number of reference
metabolomics data is such that 2–5% of observed molecules can
be reliably matched to known molecules.27 Furthermore, complex
samples such as fecal or soil extracts contain a multitude of
microbial species and metabolites, also from other sources such
as food and drugs; therefore, identifying the producing
microorganism(s) is challenging. To find product–producer pairs,
especially in metagenome/metabolome linking, several approaches
have been demonstrated. These can be broadly defined as pattern-
based, correlation-based and feature-based.42,43

Pattern-based genome mining was one of the first
correlation-based integration strategies to combine the analysis
of BGCs across strains with molecular networking demon-
strated the success of this approach for larger datasets
(Fig. 3a).43 In this methodology, genome mining information
(presence/absence of BGCs) was collected to form patterns
across 35 Salinispora strains. The fact that a molecular network
was generated for these same strains meant that correlations
in BGC-metabolite pairs could be facilitated by manually
exploring how the two patterns were overlapping, ultimately
accelerating the linking of unknown BGC to known metabolites
in addition to the prioritisation of new biosynthetic and
chemical space. This was exemplified by the discovery of
retimycin A, a quinomycin-type depsipeptide linked to the BGC
NRPS40.43 Based on a recent study by Tobias et al.44 for a total
of 22 known BGCs across 30 Photorabdus and Xenorabdus
strains (totalling 660 possible combinations), the following
statistics were deduced: in 119 (18%) cases, both BGC and its
product were found, and in 479 (73%) of the cases, neither the
BGC nor its product were found. Furthermore, in 61 (9%) cases
the BGC was found in a strain, but not its product, whereas in
one case (0.00151%) the product was found in a strain in which
its corresponding BGC was not predicted to be present.
Whereas such numbers will fluctuate43 and are highly depen-
dent on the genome and metabolome data quality, we can infer
two important things from these numbers: (i) when no BGC for
a certain product is found in a genome, it is highly unlikely that
this metabolite is produced by this organism, and (ii) in 66% of
the cases where a BGC was found in a strain, its specialized
molecule was also measured by mass spectrometry. This gives
an indication of what we might expect from larger data
sets as well.

Historically, these correlation-based approaches have been
largely manual and often targeted based on BGC information to
direct the prioritization of chemistry. However, in recent years,
automated methods have emerged that consider correlation
metrics and statistical frameworks to rank promising links
between gene cluster and molecular families or genes and mass
spectra. A metabologenomic score was introduced to link gene
clusters to mass spectra of molecules based on their presence/
absence patterns across strains45 (Fig. 3b). The score takes into
account similar assumptions as learnt from the Photorabdus
and Xenorabdus study described above: the presence of a
molecule in the absence of a likely gene cluster producing it
is heavily penalized whereas cryptic BGCs are penalized less.
Thus, such scores formalize the quality of a match and it
enables to rank matches at the large-scale that is required
nowadays. Correlation scores could be calculated between gene
cluster families and individual spectra as well. Future scoring
metrics could explore different boost and penalty values, take
into consideration the size of GCFs and MFs, as well as the
inclusion or exclusion of fragmented or incomplete BGCs.

There have also been advances in feature-based integration
strategies, although more so for ‘modular’ natural product
classes due to their relatively well-defined building blocks
(Fig. 3c). From the genome, monomers such as amino acid
moieties and glycosyl moieties, as well as enzymatic modifica-
tions such as methylation and hydroxylation, can be predicted
from gene cluster sequences. Similarly, substructures can be
predicted from mass spectra. GCFs and MFs can thus be ranked
based on the number of corresponding structural features
(Fig. 3c). For example, sub-clusters (represented by sets of genes
that co-evolve and cooperate to synthesize a certain chemical
moiety)24 could in the future be automatically matched
to chemical substructures (represented by co-occurring mass
fragments, neutral losses), and/or (groups of) mass differences
as discovered by metabolome mining (e.g., Mass2Motifs
from MS2LDA).24,32 Feature-based matching approaches have
been successfully pioneered for glycosylated and peptidic meta-
bolites targeting glycosyl groups and amino acids, termed
glycogenomics and peptidogenomics.46,47 We expect that the
correlative and feature based matching approaches can be
jointly used to refine genome–metabolome links; for example,
by first using a correlative approach followed by a reranking
based on the presence/absence of structural features. Once
confident links have been identified, metabolites can be con-
nected to their producers. In addition, complementary struc-
tural information from the genome that is hard to observe or
infer from metabolomics (e.g., the stereochemistry of amino
acids in nonribosomal peptides) can be exploited for structural
elucidation of specialised metabolites.

Some fully automated methods exist for linking mass spectra
to molecular structures, by matching structural features predicted
from genomics to those inferred from metabolomics. Specifically,
for non-ribosomal peptides (NRPs) there is NRPquest,26 and
for ribosomally synthesized and post-translationally modified
peptides (RiPPs) there are MetaMiner48 and DeepRiPP.50 While
these pattern-feature based methods are distinct in detail and
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the type of natural products they target, they share similar
principles (Fig. 4). Starting from metabolomics data and BGCs,
these methods consist of (some of) the following steps: (a)
predicting hypothetical small molecule products from BGCs,
(b) predicting the fragmentation patterns and theoretical spec-
tra of these hypothetical molecules, (c) matching mass spectra
against the theoretical spectra, allowing for a specific number
of modifications, (d) computing the statistical significance

of the matches, (e) calculating the false discovery rate of
matches, and (f) forming a molecular network of significant
identifications.

(a) Predicting hypothetical small molecule products of BGCs.
In case of NRPs, multiple algorithms are used for predicting
amino acid specificities of A-domains.22 In case of RiPPs, BGCs
are predicted based on modification enzymes found in different
RiPP classes: open reading frames (ORFs) within the BGCs are

Fig. 3 Various types of matching gene cluster families (GCFs) to molecular families (MFs) have been proposed. Panel (a) describes ‘‘pattern based
matching’’ where the two presence/absence matrices for GCFs and MCFs across all the strains are combined in one table where manually promising
candidate links are identified. (b) In ‘‘correlation based matching’’, a correlation based score is calculated such as the one proposed by Goering et al.41

Using such a scoring, GCF-MF links can be ranked to focus follow-up studies on a relevant subset. Here, the lower of the two GCF-MF links is clearly
more promising than the upper link with scores of 49 and �1, respectively. Finally, panel (c) highlights the concept of ‘‘feature based matching’’ where
structural features learnt from the genome are matched to those inferred from the metabolome. In the example, 6 structural features could be predicted
from the GCF of which a representative gene cluster is depicted. In MFs, the presence/absence of these structural features is then determined. In the
example, the top row MF has 4 of the 6 structural features present as highlighted in a representative spectrum. In contrast, the lowest ranking MF has only
the deoxysugar loss present, making it the least likely candidate to match with the GCF. It is of note that the genome provides unique structural
information on the most likely stereochemistry of the amino acids following the presence/absence of epimerization domains. In the example, the valine
moiety is most likely D-valine, something that is typically impossible to tell from metabolomics data. Hence, a match is made based on the presence/
absence of the valine moiety – independent of its stereochemistry.
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extracted as precursor RiPPs, and based on enzymes present in
the BGC, modifications are incorporated in the precursor RiPPs
to form mature RiPP structures.

(b) Predicting the fragmentation pattern and theoretical
spectra of these hypothetical molecules during mass spectro-
metry. In the case of peptides, fragmentation patterns are
formed by disconnecting amide bonds between nitrogen and
carbon. In case of more general small molecules, fragmentation
patterns are formed by disconnecting nitrogen–carbon, oxygen–
carbon, and carbon–carbon bonds.

(c) Matching mass spectra against the theoretical spectra,
allowing for a specific number of modifications. Usually predic-
tion of hypothetical small molecules based on genome mining is
erroneous, due to the difficulties involved in predicting post-
translational and post-assembly modifications. These modifica-
tions can be discovered using modification-tolerant searches of
mass spectra against hypothetical small molecules.38

(d) Computing the statistical significance of the matches.
Raw scores between hypothetical small molecules and spectra
are defined as the number of peaks shared between the two.
These scores are usually biased toward molecules with higher
molecular weights. Therefore, it is necessary to convert raw
scores into P-values, which are defined as the ratio of randomly
generated molecular structures with scores higher than the
target small molecules against the mass spectra.

(e) Calculating the false discovery rate of matches. In order
to compute the false discovery rate, hypothetical small mole-
cules are randomly shuffled to form a decoy database. Then,
the false discovery rate is computed as the ratio of the number
of molecules identified in the decoy database, over the number
of molecules identified in the target database.36,49

(f) Forming a molecular network of significant identifica-
tions. The chemical identities of the metabolites are further
expanded and contextualized using molecular networking.

Despite these common approaches to integrated data
analysis, several challenges have motivated the development

of solutions to improve integration both within and across
datasets. Key challenges include the comparability of the data
due to, for example, different experimental protocols, data
processing protocols, data formats, lack of structured reference
or knowledge bases. There is also a lack of development of tools
to check and curate data and metadata quality, as well as tools
that can use or reuse this paired data and its accompanying
metadata.

The first challenge discussed here is the availability of
consistent, well-curated, standardised data. There has been
an increasing degree of availability of whole genome sequen-
cing and metabolomics data from the same strains, enabling
complementary structural information obtained or inferred
from genome as well as metabolome predictions. Different
complementary sets of omics data related to the same origin
are termed ‘‘paired data sets’’. Over the last few years, multiple
papers have published paired data sets and shown how pattern-
based mining assists in coupling genomic information to
molecular spectra. The more paired data sets become available,
the more we can start to exploit the complementary structural
information from the genome and metabolome and link gene
clusters to their products and thereby molecules to their
producers. The latter is especially useful in metagenomics and
meta-metabolomics experiments, where a molecule can poten-
tially be produced by many different bacterial strains. Efforts
are ongoing to create a platform called the Paired omics
Data Platform (https://pairedomicsdata.bioinformatics.nl), where
existing and novel paired data sets can be recorded to provide an
overview of existing paired data sets and thereby stimulate reuse
for natural product discovery. Furthermore, additional omics
data such as transcriptomics and peptidogenomics, as well as
metadata, can be added to genomic and metabolomic data.
Transcriptome data, for example, can guide researchers to BGCs
that are actively expressed under the same conditions where
metabolites of interest are being observed.50 A comprehensive
set of linked chemical and genomic features in the paired data

Fig. 4 Starting from metabolomics data and biosynthetic gene clusters, substructure-based approaches for integrating metabolomics and genomics
data consist of the following steps. (a) Predicting hypothetical small molecule products of the biosynthetic gene clusters (here each node represents a
monomer, e.g. an amino acid or a ketide, and each edge represents a bond between monomers, e.g. amide bond), (b) predicting the fragmentation
pattern and theoretical spectra of these hypothetical molecules during mass spectrometry, (c) matching mass spectra against the theoretical spectra,
allowing for a specific number of modifications, (d) computing statistical significance of the matches, (e) calculating the false discovery rate of matches,
(f) forming molecular network of significant identifications.

Chem Soc Rev Tutorial Review

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

2 
 2

02
0.

 D
ow

nl
oa

de
d 

on
 1

3-
09

-2
4 

01
.3

3.
11

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

https://pairedomicsdata.bioinformatics.nl
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d0cs00162g


3310 | Chem. Soc. Rev., 2020, 49, 3297--3314 This journal is©The Royal Society of Chemistry 2020

sets will benefit the entire natural product research community
and beyond. Validated links can be exploited by experimentalists
to quickly assess whether specialized metabolite products are
known for predicted BGCs. Moreover, computational biologists can
use the validated links as anchor points to train machine learning
models to computationally link genome and metabolome data.

The second challenge is the importance of data and meta-
data quality, quality filters and quality vs. quantity of paired
data. Relatively poor quality data is likely to generate inaccurate
annotations and can consequently lead to erroneous hypotheses
about the biological system under investigation. The quality of
public data is frequently questioned and it is therefore important
to develop standardized workflows for generating quality control
reports. As noted earlier, there are several variables to be con-
sidered that influence the data quality, including how the sample
was handled and pre-processed, extraction procedure, analytical
methods employed, data processing and many others. Some
authors suggest that protocol standardization facilitates a better
integration of omics data; however, such standard operating
protocols may not always result in the best quality data for
individual use cases. In addition, the presence of uninformative
features in both metabolomics and genomics data, which may
come from baseline or poor quality spectra or gene reads, can
complicate integrative analysis workflows. Therefore, filtering
steps are essential for statistical analyses; however, the same
filters may also remove relevant features from the dataset. The
use of some quality controls can help to overcome this issue and
largely improve the quality of the final data. Altogether, the
choice of which datasets to include in paired data analysis is a
compromise between selecting higher-quality sample data and
datasets and the total number of samples. Since more paired
datasets will typically result in a higher chance of finding relevant
patterns, weighed choices about data quality have to be made.

Comprehensive, curated, and standard-adhering sample
information is crucial, and this includes metadata and
the validity of the links between omics data sets. To achieve
this, the use of domain-specific ontologies and linking these
ontologies across domains not only helps to standardize
sample information; its application also facilitates the linking
of information: for example, smart use of ontologies can ensure
that not only direct (exact) terms will match, but also indirect
(related) terms. On both the genomics and metabolomics sides,
several initiatives have spearheaded developments in creating
uniform metadata with extensive sample information.

Recent publications show exciting opportunities regarding
new ways in which paired genomics and metabolomics
data sets can yield novel microbial–metabolite relationships.
Morton and co-workers introduced mmvec, which uses meta-
bolome data and taxonomic profiles as input and then applies a
single-layer neural network to learn the co-occurrence prob-
abilities between measured metabolites and microbes.51

Mmvec does not use correlation analyses to link microbes to
metabolites, but uses probability-based metrics to identify the
most likely microbe–metabolite co-occurrences. Such a method
holds great promise as it overcomes some of the limitations of
correlation-based approaches when applied to non-absolute

quantitative data (as microbial taxonomy and metabolite infor-
mation typically are) whilst still presenting a ranked list of
interactions. Another recent tool linking taxonomic informa-
tion to metabolite abundance is MelonnPan, which predicts
community metabolomes from microbial community profiles.52

Mallick and coworkers show how their computational framework
successfully recovers metabolic trends for more than 50% of
microbiome-associated molecules – thereby providing insights in
the metabolic capacity of communities for which only metage-
nomics data is available. Similarly, Cao et al. developed a method
for detecting microbiota-associated small molecules based on the
patterns of co-occurrence of molecular and microbial features
across multiple microbiomes, and further mapping each mole-
cule to the phylogenetic clade responsible for its production/
transformation.53 These approaches aid in linking bacterial taxa
or gene clusters to metabolite products using correlation-based
or neural networking (machine learning) methods. Ultimately,
the success of linking genome and metabolome mining work-
flows for NP discovery will depend on platform and infrastructure
development. This is always a chicken and egg conundrum. The
tools need to be developed to analyze the data but then we also
need appropriate data to develop the tools. Successful infrastruc-
ture needs access to relevant training data. These data are well-
curated data, often assembled via community-knowledge akin to
the way MIBiG and GNPS are capturing the knowledge by the
community in computer-readable formats to enable integrated
analysis across data types.

5. Opportunities

Over the last decade and a half, the cost of sequencing has
dropped by nine orders of magnitude, and during the same
time, the costs to generate mass spectrometric data have
dropped by two orders of magnitude. This has resulted in
increasing numbers of laboratories that can collect both these
data types. For example, the Qiita platform54 has public gen-
ome data on hundreds of thousands of microbiome samples,
and GNPS has public mass spectrometry data for thousands of
microbial samples including cultures and microbiome samples
(tens of thousands), as well as metabolomics on samples from
the American Gut Project (http://humanfoodproject.com/amer
icangut/), the Global FoodOmics (https://globalfoodomics.org),
Tiny Earth (https://tinyearth.wisc.edu/) and the (integrative)
Human Microbiome Project (https://hmpdacc.org/ihmp/).
Thus, Qiita and GNPS currently contain thousands of samples
for which both metabolomics and sequencing (predominantly
16S-rRNA sequences, but increasingly whole genome sequences
as well) have been collected. These data include isolates
(around 1700 – predominantly Streptomyces spp., Salinispora
spp., Cyanobacteria spp., and human microbiome related bac-
terial species) and, predominantly, human gut metagenomes
(more than 500) and 16S-rRNA amplicon sequences (over 2000).
However, due to the complexity of linking the data sets in
practice, the utility of this data has not yet been fully realized
nor exploited.
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Starting with the pairing of such data sets, we are learning
how to begin navigating this opportunity. To facilitate the
integration of multiple omics methods, standardization is
critical. Although this certainly allows more overarching
research questions to be asked, no universal method will ever
exist for all data types and questions. However, we see oppor-
tunities to use more standardized data formats, including
metadata, using controlled vocabularies when possible, and
to report data in a reusable format. Here, journals could play
their role to define clear requirements of what needs to be
deposited in the public domain and how the data is linked in
an easily accessible format. For example, with sequence data,
most data is deposited in the public domain file due to journal
requirements. With mass spectrometry data there are currently
tens of different formats and no requirement by the scientific
community to deposit data with an accession number. In our
opinion, data should be publicly shared as soon as possible,
preferably prior to paper publication. One way, aside from a
community-enforced sharing requirement, could be to incenti-
vise sharing, if more knowledge or data is gained by the user
when shared publicly. In this regard, GNPS and the work at
MetaboLights and the Metabolomics Workbench are major
initiatives.29,31 Overall, we expect that the amount of public
data will increase fuelled by many open data initiatives funded
by the general public.

Genomics and metabolomics datasets are increasingly cor-
related to each other, in particular for the modular biosynthetic
pathways for polyketides and nonribosomal peptides, and often
by manual approaches. However, the use of more complex
statistical methods to integrate these data are urgently needed.
For example, metabologenomic scoring could be improved by
taking into account prior probabilities for observing certain
links, or by correcting for structure in the data, such as
phylogenetic relationships between species. Such future
improvements will also expand the successful linking of gene
clusters to molecules for any compound class going beyond the
modular metabolites. Also in general, additional sophisticated
tools have to be developed in order to create the connection
between these two areas of expertise. This is not a simple task,
as interdisciplinary knowledge at the interface of chemistry,
biology and informatics is required. Making these combined
omics tools also openly accessible to the community will be
pivotal to our understanding of chemical biology. In this
regard, the recent efforts by Qiime2, originally designed and
focused on genomics data, to also enable metabolomics
analyses are very promising.55

The computationally-driven correlation- and feature-based
matching (Fig. 3b and c) rely on gene cluster and spectral
similarity scoring across data sets and accurate presence/
absence patterns across strains. We foresee possible improve-
ments in similarity scoring through machine learning develop-
ments and increasingly large sets of reference library MS/MS
spectra becoming available that will boost genome-metabolome
matching. Recent exciting developments of new tools allow for
more reliable annotation of compound classes and substruc-
tures. We think that such additional structural features as

chemical compound class predictions (i.e., from antiSmash,
MolNetEnhancer or CSI:FingerID, etc.) could assist in reranking
and refinement of linking results when matched to compound
class predictions inferred from the genome, i.e., a terpene
biosynthesis cluster is more likely to match to a predicted
terpene molecular family than a family of NRPS. Furthermore,
on the genomics side, the number of validated BGCs to mole-
cular structure links are increasingly fuelled by initiatives such
as MiBIG;21 such datasets facilitate algorithmic development to
predict structural features from genomic sequences. In addition,
new strategies to improve structural predictions, such as com-
putational predictions of substrate specificities and regioselec-
tivities of core as well as tailoring biosynthetic enzymes, will also
contribute to improved linking through feature-based matching.
Synthetic biology can also aid in this regard, by synthesizing and
assaying targeted sets of enzymes or enzymatic domains that
would fill key gaps in current training sets.

To conclude, we foresee that major computational advances
will be needed to exploit the full potential of paired omics datasets
already available. With the increasingly higher-throughput geno-
mics and metabolomics pipelines available, we expect more
paired data sets to become available. Ultimately, both develop-
ments will fuel each other, as computational advances to link data
will stimulate the generation of paired data sets. As showcased by
the many community initiatives and tools that have appeared over
the last five years, it is clear that the era of integrated omics
analysis has well and truly started. The question will be what these
integrated capabilities will look like – perhaps it will be a
facebook-like network infrastructure that, instead of connecting
data to people, will be used to connect different types of informa-
tion about molecules. We look forward to all the new and exciting
developments in the years ahead.

Conflicts of interest

MHM is a co-founder of Design Pharmaceuticals and a member
of the scientific advisory board of Hexagon Bio. PCD is a
member of the scientific advisory boards of Sirenas and Cybele.

References

1 R. Mendes, M. Kruijt, I. de Bruijn, E. Dekkers, M. van der
Voort, J. H. M. Schneider, Y. M. Piceno, T. Z. DeSantis,
G. L. Andersen, P. A. H. M. Bakker and J. M. Raaijmakers,
Science, 2011, 332, 1097–1100.

2 V. J. Carrión, J. Perez-Jaramillo, V. Cordovez, V. Tracanna,
M. de Hollander, D. Ruiz-Buck, L. W. Mendes, W. F. J. van
Ijcken, R. Gomez-Exposito, S. S. Elsayed, P. Mohanraju,
A. Arifah, J. van der Oost, J. N. Paulson, R. Mendes,
G. P. van Wezel, M. H. Medema and J. M. Raaijmakers,
Science, 2019, 366, 606–612.

3 A. Zipperer, M. C. Konnerth, C. Laux, A. Berscheid, D. Janek,
C. Weidenmaier, M. Burian, N. A. Schilling, C. Slavetinsky,
M. Marschal, M. Willmann, H. Kalbacher, B. Schittek,

Chem Soc Rev Tutorial Review

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

2 
 2

02
0.

 D
ow

nl
oa

de
d 

on
 1

3-
09

-2
4 

01
.3

3.
11

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d0cs00162g


3312 | Chem. Soc. Rev., 2020, 49, 3297--3314 This journal is©The Royal Society of Chemistry 2020
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and F. O. Glöckner, Nat. Chem. Biol., 2015, 11, 625.

20 J. A. van Santen, G. Jacob, A. L. Singh, V. Aniebok,
M. J. Balunas, D. Bunsko, F. C. Neto, L. Castaño-Espriu,
C. Chang, T. N. Clark, J. L. Cleary Little, D. A. Delgadillo,
P. C. Dorrestein, K. R. Duncan, J. M. Egan, M. M. Galey,
F. P. J. Haeckl, A. Hua, A. H. Hughes, D. Iskakova,
A. Khadilkar, J.-H. Lee, S. Lee, N. LeGrow, D. Y. Liu,
J. M. Macho, C. S. McCaughey, M. H. Medema,
R. P. Neupane, T. J. O’Donnell, J. S. Paula, L. M. Sanchez,
A. F. Shaikh, S. Soldatou, B. R. Terlouw, T. A. Tran,
M. Valentine, J. J. J. van der Hooft, D. A. Vo, M. Wang,
D. Wilson, K. E. Zink and R. G. Linington, ACS Cent. Sci.,
2019, 5, 1824–1833.

21 S. A. Kautsar, K. Blin, S. Shaw, J. C. Navarro-Muñoz,
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