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Designing better porous materials for gas storage or separations applications frequently

leverages known structure–property relationships. Reliable structure–property

relationships, however, only reveal themselves when adsorption data on many porous

materials are aggregated and compared. Gathering enough data experimentally is

prohibitively time consuming, and even approaches based on large-scale computer

simulations face challenges. Brute force computational screening approaches that do

not efficiently sample the space of porous materials may be ineffective when the

number of possible materials is too large. Here we describe a general and efficient

computational method for mapping structure–property spaces of porous materials that

can be useful for adsorption related applications. We describe an algorithm that

generates random porous “pseudomaterials”, for which we calculate structural

characteristics (e.g., surface area, pore size and void fraction) and also gas adsorption

properties via molecular simulations. Here we chose to focus on void fraction and Xe

adsorption at 1 bar, 5 bar, and 10 bar. The algorithm then identifies pseudomaterials

with rare combinations of void fraction and Xe adsorption and mutates them to

generate new pseudomaterials, thereby selectively adding data only to those parts of

the structure–property map that are the least explored. Use of this method can help

guide the design of new porous materials for gas storage and separations applications

in the future.
Introduction

Porous materials are used widely in many applications related to catalysis,1–4

separations,5–13 gas storage,14–19 and chemical sensing,20–23 among others. Many of
these applications stand to be improved from better porous materials, and so
signicant effort is devoted to searching for them.24–28
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In particular, enormous effort has been devoted over the past decade to
designing better metal–organic frameworks (MOFs), which are porous crystals
with extremely high surface areas that are synthesized by the self-assembly of
modular chemical building blocks.1,29,30 Due to the modularity of the building
blocks used in their synthesis, thousands of new MOFs have been synthesized
over the past decade, and there are undoubtedly millions of possible MOFs that
have not yet been created.31 This large design space of possible MOFs makes it an
ideal class to search within for better porous materials.32

However, the availability of a large design space does not itself provide any
guidance on how to design a better porous material. Although simple trial-and-
error synthesis combined with chemical intuition have yielded numerous
successes in the eld of MOFs,7,33 rational design of materials is generally
considered preferable. One way to improve on the trial-and-error approach is to
search for design rules that can be extracted from observations of structure–
property relationships. For example, Bae et al. aggregated experimental data of
CO2 adsorption in zeolites and MOFs from over 40 sources in the literature and
examined trends with respect to material properties.9 In that work, some trends
appeared robust, such as CO2 loading at 0.5 bar varying linearly with the isosteric
heat of adsorption (up to a point). However, at 2.5 bar, the authors wrote that no
trend could be inferred from the data. In a follow up work by us, which considered
the same relationships (CO2 loading vs. isosteric heat of adsorption) at the same
conditions, but used molecular simulation data from over 130 000 hypothetical
MOFs,13 we found the same trends as Bae et al., but also many well-dened
relationships that were not visible when only 40 data points were available.
There aremany recent examples of other researchers usingmolecular simulations
and large datasets (numbering anywhere from 5000 to over 600 000 materials) to
obtain structure–property relationships for porous materials related to gas
adsorption applications.8,10,15,31,34–37 It is worth noting that these computational
studies oen do lead to better synthesized materials, usually because the
observed structure–property relationships led to design rules that were then fol-
lowed by experimentalists. For example, a promising MOF for natural gas storage,
NU-125, was found almost immediately aer the discovery that methane storage
at high pressure peaks sharply at void fractions of 0.8.14

Their demonstrated utility notwithstanding, the large-scale computational
studies described above were nevertheless very inefficient with regards to
mapping structure–property relationships. This is because many of the materials
considered in those large-scale studies had very similar structures, and hence
similar adsorption properties. In other words, the structure–property spaces were
not explored uniformly; some properties (e.g., small pores) were encountered
much more frequently than others (e.g., large pores). Undoubtedly to the frus-
tration of many, it has usually been the most sought aer properties (e.g., high
concentrations of adsorbed H2 at 298 K and 100 bar) that have been the most
poorly represented in the datasets, dwarfed in number by materials whose
properties do not lend them any obvious application value.

Here we describe a method whose aim is to uniformly, and thus efficiently,
explore structure–property spaces related to gas adsorption. Briey, the method
revolves around the use of crystalline porous “pseudomaterials”, which are
collections of randomly arranged Lennard-Jones spheres in a periodic unit cell.
Despite their randomness within the unit cell, they have long-range order and are
222 | Faraday Discuss., 2017, 201, 221–232 This journal is © The Royal Society of Chemistry 2017
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expected to behave like porous crystals rather than like amorphous materials.
Furthermore, a subset of pseudomaterials have highly symmetric arrangements
of spheres even within their unit cells, thus exactly resembling typical zeolites and
MOFs. Using the same computational methodology that is used for zeolites and
MOFs, we are able to calculate surface areas, void fractions, and gas adsorption in
these pseudomaterials. We then identify pseudomaterials in regions of the
structure–property space that are underexplored and mutate them to generate
additional (but not identical) child materials. Pseudomaterials in well-explored
regions of the structure–property space are ignored. The details are described
in the Methods section.

We focused in this initial study on Xe adsorption at various pressures (1 bar, 5
bar, and 10 bar) as a function of the void fraction of the porous pseudomaterials.
In addition to the relative simplicity of modelling Xe adsorption, it is a gas of
industrial importance as it is a component in uorescent lights and must be
removed along with radioactive isotopes of 85Kr from spent nuclear fuels.6,38,39

Both of these applications typically employ cryogenic distillation to obtain pure
Xe, which is very energy intensive and could potentially be replaced by the use of
the right porous adsorbent in process that operates under ambient conditions.6,40

A primary focus of this study was to explore how quickly the space of Xe
adsorption vs. void fraction is explored using this mutation strategy, and to see
whether the structure–property space of porous pseudomaterials resembles that
of real materials.

Methodology

An overview schematic of our six step computational method is presented in
Fig. 1. The details of each step are given in the subsections that follow, but
a concise overview is provided here. First, a seed population of pseudomaterials is
generated. Second, various structural characteristics (e.g., surface area, pore size
and void fraction) and adsorption properties (e.g., Xe loading at 298 K at 5 bar) are
Fig. 1 Flow chart describing the method in six parts: generating a seed population (A),
calculating properties of interest (B), selecting rare pseudomaterials as candidate parents
(C), removing anomalous results due to statistical undersampling (D), adjusting mutation
strengths (E), and mutating rare parents to create new materials (F).

This journal is © The Royal Society of Chemistry 2017 Faraday Discuss., 2017, 201, 221–232 | 223
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calculated for each newly generated pseudomaterial. Third, pseudomaterials with
rare structure–property combinations are identied as candidate “parents” that
can spawn “child” materials with similar properties. Fourth, parent candidates
are tested to ensure that the rareness of their properties is not due to calculation
inaccuracies stemming from statistical undersampling. Fih, a mutation
strength parameter is adjusted to ensure that child pseudomaterials are not too
similar, nor too different, from their parents (this only affects the efficiency with
which the structure–property space is explored). Sixth, parent pseudomaterials
are mutated to generate a new population of child pseudomaterials. At that point,
we return to step two where the process repeats for as many generations as are
needed to explore the structure–property space completely.
Generating the seed population

Pseudomaterials are generated by randomly positioning Lennard-Jones spheres,
which we refer to as pseudoatoms, within a randomly sized unit cell (see Fig. 2).
The crystal lattice constants (i.e., unit cell dimensions) were bounded between
25.6 and 51.2 Å for each of the crystallographic directions (the lower bound was
Fig. 2 Orthogonal and perspective views of two randomly generated pseudomaterials, A
and B. The black wireframes represent the unit cells. Pseudoatoms are shown as spheres,
whose radii and colour indicate s and 3 values respectively.

224 | Faraday Discuss., 2017, 201, 221–232 This journal is © The Royal Society of Chemistry 2017
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set as twice the cutoff length used for the interactions between non-bonded
atoms: 12.8 Å). The number density of pseudoatoms was bounded between 1.49
� 10�5 and 0.02122 atoms per Å3. The density minimum was chosen to ensure
that each pseudomaterial would have at least two pseudoatoms, and the
maximum corresponds to 10% the number density of iron. Pseudoatom types
were dened by Lennard-Jones (LJ) interaction parameters: s, van der Waals
radius, and 3, the potential well depth. Values of s and 3 were randomly chosen in
the range between 1.052 and 6.549 Å for s and between 1.258 and 513.26K/kB for 3.
Although a pseudomaterial might have hundreds of pseudoatoms, each material
had only four pseudoatom types. No two materials shared the same pseudoatom
types. This range of LJ parameters was based on the Universal Force Field (UFF),41

where we allowed s and 3 values to be 50% lower or greater, respectively, than the
minimum and maximum values present in that force eld. In this study, the seed
population, and each subsequent child population, contained 100
pseudomaterials.

Modeling properties of interest

Aer a generation of pseudomaterials was created, we used grand canonical
Monte Carlo (GCMC) simulations to determine xenon adsorption at 298 K and 1
bar, 5 bar, and 10 bar. Pseudomaterials were treated as rigid structures, where the
positions of the pseudoatoms were held xed in space throughout the simulation.
The helium void fraction of each pseudomaterial was calculated using a Widom
insertion method,42 with a helium probe (a ¼ 2.96 Å). See the ESI† for more
details.

Selecting rare materials

To explore new regions of the structure–property space, pseudomaterials with
rare structure–property combinations were preferentially selected as candidate
“parents” in the process of creating new materials. First, the structure–property
space is subdivided into bins. In our case, the Xe-adsorption-void-fraction space
was divided into 100 bins (10 bins along the Xe loading axis times 10 bins along
the void fraction axis). Void fraction ranged from 0 to 100%, and Xe loading from
0 to either 50 cm3 Xe per cm3 framework at 1 bar, 100 cm3 cm�3 at 5 bar, or 150
cm3 cm�3 at 10 bar. Pseudomaterials were chosen as candidate parents with
probability inversely proportional to the number of materials in the same bin (see
the ESI† for exact weighting function).

Removing anomalous results

Because the Monte Carlo methods used to model Xe loading and void fraction are
stochastic, there is always a nite probability that a candidate parent is selected
on the basis of anomalous simulation results (e.g., zero Xe loading at 10 bar in
a material with over 90% void fraction, which contradicts the ideal gas law). Such
anomalous results would get the highest weighting based on the selection criteria
of rarity, but would have no children with similar properties. To prevent these
anomalous results from creating such inefficiencies, the Xe loading and void
fraction of each candidate parent were re-simulated ve times. If the average value
from these retests varied more than one bin-width from the original, the selected
pseudomaterial was disqualied as a parent and ignored subsequently.
This journal is © The Royal Society of Chemistry 2017 Faraday Discuss., 2017, 201, 221–232 | 225
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Assigning mutation strength

When a parent is selected due to a low bin count, the expected outcome is that
many children (though not all) are generated in the same bin. However, if the
mutation strength is too high, most of the children may land far from the parent
with respect to their structure–property combinations. This is particularly
common near edges or cusps of the structure–property space. Conversely, if the
mutation strength is too low, all of the child materials can end up in the same bin
as the parent, thus not exploring the structure–property space outwards.

To address this, we apply an adaptive scheme that adjusts the mutation
strength every generation for each bin. In this study, each bin had an initial
mutation strength of 20% and was increased or decreased as follows. If in any
generation, a bin produced 90% of its children in other bins (not including itself)
the mutation strength was halved. If more than 50% of its children ended up in
the same bin as the parent, the mutation strength was doubled (up to a maximum
of 40%). In the in-between case, the mutation strength was not adjusted.
Mutating parents, creating new materials

Once the mutation strengths are adjusted for each bin, a new generation of child
pseudomaterials is created. Here mutation refers to the process of randomly
perturbing each value that denes the parent material’s structure (coordinates of
each pseudoatom, number density, LJ values of pseudoatom types, and unit cell
dimensions). Generating a mutant child can be concisely described as linearly
interpolating each dening value between the parent and a completely random
pseudomaterial (unrelated to the parent) to a degree dictated by the mutation
strength. At 0%, the child is a clone of its parent, and at 100% the child is
a completely new randomly generated pseudomaterial.
Uniformity metric

To measure progress in exploring the structure–property space, we dened
a uniformity metric (U). First each bin-count (c) was normalised: c* ¼ c/cmax,
where cmax is the highest bin-count up to the current generation. Then U is the
variance of the normalised bin-counts for the number of non-zero bins in the
dataset (N): U ¼ S[c* � (Sc*/N)]/N. The lower the value of U, the more uniformly
the structure–property space has been explored. A high value of U indicates that
some structure–property combinations are over-represented relative to others.
Results

In seed populations (Fig. 3) in all three runs (1, 5, and 10 bar) more materials were
concentrated in the 0.9 to 1 void fraction domain than others, with very few to no
materials in the 0 to 0.1 range. In the seed population of the 1 bar run (Fig. 4) the
most populated bin contained twice as many materials as the next most popu-
lated bin. While the density limits could be adjusted to produce a more even
distribution of structure–property combinations right from the start, the method
should adjust for initial unevenness because we then selectively mutate rare
pseudomaterials. Already aer one generation we see a more even distribution of
structure property-combinations as well as six new bins (see Fig. 4A); aer y
226 | Faraday Discuss., 2017, 201, 221–232 This journal is © The Royal Society of Chemistry 2017
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Fig. 3 Scatterplots for seed-populations of 100 pseudomaterials from three separate runs
at 1 bar (A), 5 bar (B), and 10 bar (C). The entire parameter-space is plotted as searched in
each case, each data point represents a different material. Search limits were set at 50,
100, and 150 cm3 xenon per cm3 framework at 1, 5, and 10 bar respectively.
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generations, the number of accessed bins has nearly doubled and the distribution
continues to atten (Fig. 4B).

Because new pseudomaterials are created by mutating existing ones, new bins
are accessed by few children while the majority of new pseudomaterials end up in
bins that have already been populated. This contributes to the histogram in Fig. 4
Fig. 4 Bar chart of all bin-counts after seed population (black) and addition of first
generation (red, A) and first fifty generations (red, B). Bin-counts were normalised with the
maximum bin-count.

This journal is © The Royal Society of Chemistry 2017 Faraday Discuss., 2017, 201, 221–232 | 227
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having a “sloped” shape, where bins accessed in earlier generations tend to have
higher bin-counts than bins accessed later. Even aer 50 generations, we
observed that the most populated bin had nearly twice as many materials as the
next most populated bin, and that the 0 to 0.1 void fraction bin was still not
accessed (i.e., empty). Because this bin clearly corresponds to a physically feasible
region of structure–property space (i.e., that of solid materials), the emptiness of
the bin indicated that the method has not yet explored the entire space aer 50
generations. However, the signicantly attening of the distribution clearly shows
that the method is functioning as intended.

We can observe clear examples of new bins being accessed aer the 20th and
30th generations in the 1 bar run and the 20th generation in the 5 bar run (see
Fig. 5A and B) as indicated by a single red data point in its own bin. The method
then successfully lls these bins within the next 10 to 20 generations. In the 20th

through 30th generations in the 1 bar run, for example, the process of lling the
newly-accessed bins results in a dense cluster of data points with a very slight gap
between it and the adjacent bin. The gap is slight because the binning routine
does not notice the lack of data points as it occurs in the same bin as the dense
cluster. The method does not smooth the distribution of pseudomaterials within
bins, only between them. This results in some clustered data points, most clearly
visible in the 5 bar data (see Fig. 5B).

The uniformity metric (see Fig. 6) gives insight into how new bins are accessed
and then lled with materials. Immediately aer the seed population was
generated there is a slight increase in the uniformity metric, as new bins that are
Fig. 5 Scatterplots after 10, 20, 30, 40, and 50 generations (from left to right) of children
had been added for runs at 1 bar (A), 5 bar (B), and 10 bar (C). Children added in the last
generation are highlighted in red.

228 | Faraday Discuss., 2017, 201, 221–232 This journal is © The Royal Society of Chemistry 2017
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Fig. 6 The uniformity metric after each generation for each of the 1 (red), 5 (blue), and 10
bar (green) runs.
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adjacent to sparsely populated regions, are accessed. These new bins are then
lled relatively quickly (10 generations or less) as indicated by a decrease in the
uniformity metric. The uniformity metric then steadily rose in the 1 and 10 bar
runs before starting to decrease (Fig. 6), as new bins were accessed and then lled
with pseudomaterials. In the 1 bar run, for example, there was a slight decrease
followed by an increase in uniformity (or a slight increase followed by a decrease
in uniformity metric) from generation 30 to 50 corresponding to the sudden
migration of child pseudomaterials into the three bins in the upper Xe loading
domain (see Fig. 5A, 30 vs. 40 generations). This trend is also seen in the 5 bar run
between generations 30 and 50, as well as in the 10 bar run between generations
15 and 30. This process of discovering new bins can be observed as peaks in the
uniformity metric, where the downward slope represents the lling of those bins.
Fig. 6 indicates that the uniformity metric is decreasing but has not yet reached
a steady minimum value. We expect that allowing this method to proceed with
more generations, beyond the 50 shown here, would eventually yield a more
complete mapping of the structure–property space, where the uniformity metric
would approach zero and every bin would have an equal number of materials.

Because pseudomaterials are random congurations of Lennard-Jones
spheres and thus are not synthesizable, it is reasonable to ask how representa-
tive they are of real materials. The general shape of the structure–property maps
of pseudomaterials we observed here (as shown in Fig. 5) closely resembles what
was seen for Xe adsorption in a high throughput screening study on a database of
MOFs.8 In a similarly study on MOFs, but looking at methane adsorption at 35
bar, there were observations of a sharp peak in loading at 0.8 void fraction, not
unlike the sharp peaks we observe here for Xe loading in pseudomaterials. These
similarities in structure–property relationships between MOFs and pseudomate-
rials are encouraging and support the possibility that the latter can have utility in
helping understand real materials.
Conclusions

Despite signicant strides in discovering better porous materials for a wide range
of applications, particularly in the case of MOFs, it remains challenging to nd
This journal is © The Royal Society of Chemistry 2017 Faraday Discuss., 2017, 201, 221–232 | 229
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the right design rules, especially as they vary from application to application. To
extract design rules for a new application, one requires large datasets, for which
experimental screening is too costly and time consuming, and for which high
throughput computational screening can be very inefficient if the parameter
space is non-uniformly sampled.

We have developed a method for efficiently exploring structure–property maps
that relate to gas adsorption in sorbents through the creation of multiple
generations of porous pseudomaterials. In each generation we simulated Xe
loading and void fraction using classical GCMC techniques. Then we selected
pseudomaterials with rare structure–property combinations andmutated them to
generate child materials in the lesser explored areas of the structure–property
space. We considered 50 generations for Xe loading at 1 bar, 5 bar, and 10 bar. We
observed the method systematically accessing new bins then lling them with
new pseudomaterials, which gradually makes the distribution of properties in the
dataset more uniform. To measure this uniformity, we introduced a quantitative
metric for tracking this process called the uniformity metric.

Encouragingly, structure–property maps from simulations of real materials
(MOFs) closely resembled those found for our pseudomaterials. The method
presented here represents a computationally efficient means by which to rapidly
map a structure–property space that can then be used to extract potentially useful
design rules. We hope this methodology may someday aid in the design of better
porous adsorbents.
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