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Bismuth oxyhalides: synthesis, structure and
photoelectrochemical activityy

Davinder S. Bhachu,? Savio J. A. Moniz,” Sanjayan Sathasivam,® David O. Scanlon,®
Aron Walsh, Salem M. Bawaked," Mohamed Mokhtar," Abdullah Y. Obaid,"
Ivan P. Parkin,® Junwang Tang® and Claire J. Carmalt*?

We report the synthesis and photoelectrochemical assessment of phase pure tetragonal matlockite
structured BiOX (where X = Cl, Br, 1) films. The materials were deposited using aerosol-assisted chemical
vapour deposition. The measured optical bandgaps of the oxyhalides, supported by density functional
theory calculations, showed a red shift with the increasing size of halide following the binding energy of
the anion p-orbitals that form the valence band. Stability and photoelectrochemical studies carried out
without a sacrificial electron donor showed the n-type BiOBr film to have the highest photocurrent
reported for BiOBr in the literature to date (0.3 mA cm™2 at 1.23 V vs. RHE), indicating it is an excellent
candidate for solar fuel production with a very low onset potential of 0.2 V vs. RHE. The high

Received 26th January 2016
Accepted 5th March 2016

DOI: 10.1039/c65c00389¢ performance was attributed to the preferred growth of the film in the [011] direction, as shown by X-ray

Open Access Article. Published on 09 2016. Downloaded on 31-01-26 04.28.51.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

www.rsc.org/chemicalscience

Introduction

Photoelectrochemical (PEC) water splitting was known as early
as 1969 from work carried out by Fujishima and Honda on
n-type rutile TiO, single crystals."* This finding laid the foun-
dations for the development of materials that harvest solar
energy for photocatalytic purification and solar energy conver-
sion. The PEC process proceeds when a semiconducting mate-
rial absorbs light that is equal or above the energy of its optical
bandgap. This then results in electrons or holes that are
transported to surface sites where redox reactions can occur.
Additionally, the carriers must have sufficient chemical

“Materials Chemistry Centre, Department of Chemistry, University College London, 20
Gordon Street, London WC1H 04], UK. E-mail: c.j.carmalt@ucl.ac.uk

*Department of Chemical Engineering, University College London, Torrington Place,
London WCIE 7JE, UK

°‘Bio Nano Consulting Ltd, The Gridiron Building, One Pancras Square, London N1C
4AG, UK

“University College London, Kathleen Lonsdale Materials Chemistry, Department of
Chemistry, 20 Gordon Street, London WC1H 0A], UK

‘Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation
Campus, Didcot, Oxfordshire OX11 ODE, UK

/Centre for Sustainable Chemical Technologies, Department of Chemistry, University of
Bath, Bath, BA2 7AY, UK

sGlobal E’ Institute, Department of Materials Science and Engineering, Yonsei
University, Seoul 120-749, Korea

"Chemistry Department, Faculty of Science, King Abdulaziz University, Saudi Arabia
‘Surface Chemistry and Catalytic Studies Group, King Abdulaziz University, Saudi
Arabia

available. See DOLI:

T Electronic  supplementary  information

10.1039/c65c00389¢

(ES)

4832 | Chem. Sci., 2016, 7, 4832-4841

diffraction, leading to internal electric fields that minimize charge carrier recombination.

potential to drive water oxidation and reduction, as determined
by the absolute band energies.>” TiO, is the most studied
material for this application as it not only meets the afore-
mentioned criteria but is also highly photoactive.®® However,
the optical bandgap of TiO, at around 3.0 eV lies in the ultra-
violet (UV) portion of the solar spectrum, which severely limits
the maximum power conversion.*™ As a result, PEC research of
late has been heavily driven into finding visible light active
materials suitable for photoelectrodes.*>™*

Traditional methods to visible light active materials have
involved modifying wide gap semiconductors such as TiO, and
ZnO through doping, alloying, junction formation or sensiti-
zation in order to drive the bandgap into the visible region with
varying degrees of success.''>**" The second approach has
been to use well-known solar absorber materials, such as Si,
GaP and GaAs that have much lower optical band gaps than
TiO,."* For example III-V semiconductor materials such as
GaInP, and n-p junctions of GaAs coupled to a Pt counter
electrode have resulted in light conversion efficiencies of
12.4%." These materials however are quite unstable in aqueous
conditions. Recent work by the Lewis group showed that
unstable photoanodes such as Si, GaP and GaAs could be
markedly improved in terms of stability and hole conduction by
protecting the photoelectrodes with TiO, layers grown by
atomic layer deposition (ALD) and adding a surface electro-
catalyst.* More recently, solution processed tandem solar cells
of CH3;NH;PbI; coupled to a NiFe layered double hydroxide
catalyst demonstrated a solar-to-hydrogen efficiency of
~12.3%.*° Material instability under working conditions
however was again a significant issue. The third strategy

This journal is © The Royal Society of Chemistry 2016
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involves developing new functional systems. These are mate-
rials that have not been conventionally used as photoelectrodes
and range from simple oxides, sulphides,** complex oxides and
more recently metal-free materials such as graphitic carbon-
nitride.”* Bismuth oxyhalides, BiOX (X = Cl, Br, I) are a class
of V-VI-VII ternary semiconductor materials.”**® These mate-
rials all crystallise in a tetragonal matlockite structure,”**°
which is a layered structure made up of [X-Bi-O-Bi-X] slabs
stacked together by van der Waals interactions, as shown in
Fig. 1. In this [X-Bi-O-Bi-X] motif, each bismuth centre is
surrounded by four oxygen atoms and four halogen atoms,
giving rise to an asymmetric decahedral symmetry. The
combination of strong intralayer covalent bonding coupled with
interlayer van der Waals attractions makes these materials
interesting for anisotropic structural, electrical, optical and
mechanical properties.”® Traditionally, bismuth oxyhalides have
been investigated as catalysts, ferroelectric materials, storage
materials, and pigments.** More recently however, these mate-
rials have been tested for a wide range of applications from
photocatalytic waste water and indoor-gas purification, water
splitting, organic synthesis, and selective oxidation of alco-
hols.*** These materials have shown some promise in the
photocatalytic degradation of organic dyes, but very little has
been reported on their PEC properties.>”**>?” Their potential
arises from the open crystalline structure of the material
coupled with an indirect band gap that reduces the probability
for electron-hole recombination.’® In addition, the crystal
structure also results in internal electric fields perpendicular to
the [X-Bi-O-Bi-X] slabs.* This can potentially facilitate effi-
cient charge separation along the [001] direction, thus further
suppressing recombination.*

In the present study, a series of BiOX (X = Cl, Br, I) films were
synthesised, for the first time, using aerosol assisted chemical
vapour deposition (AACVD). The films were characterised
structurally using a combination of standard laboratory tech-
niques and compared to density functional theory (DFT)

Fig. 1 Crystal structure of the BiOX systems (space group P4/nmm,
Dan symmetry) with stoichiometric X-Bi—-O-Bi—X bi-layers stacked
along the c axis. Bismuth, oxygen and halide ions are denoted by black,
red and blue spheres, respectively.

This journal is © The Royal Society of Chemistry 2016
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calculations, which provides insights into the electronic struc-
ture of these materials. More importantly, and to gain
a complete understanding of the photophysical properties of the
as-deposited BiOX films, their photoelectrochemical response
was analysed under 100 mW cm ™2 illumination in 0.5 M Na,SO,
electrolyte. All films showed photoactivity, with the BiOBr
sample showing the highest photocurrent ever reported for that
system without the use of a sacrificial electron donor. The BiOBr
film even displayed photocurrents three times higher than that
recorded for a BiOBr-reduced graphene composite electrode
that was tested under similar conditions by Li et al.*® Further-
more, the BiOBr film also showed the best photostability, with
only limited photocorrosion after one hour of testing, compared
to the BiOCl and BiOI deposited by AACVD.

Experimental
Synthetic procedure

Depositions were carried out under air. Precursors were placed
in a glass bubbler and an aerosol mist was created using
a piezoelectric device (Fig. 2). All chemicals were procured from
Aldrich and were used as received.

BiX; (X = Cl, Br, I) (1 mmol) was dissolved in N,N-dime-
thylformamide (25 ml). The resulting solution was stirred for
30 minutes and then atomised. The precursor flow was kept at
1 1 min~. The glass substrate was FTO glass, NSG TEC™ 15,
15 cm X 4 cm X 0.3 cm. A top plate was suspended 0.5 cm
above the glass substrate to ensure laminar flow. The substrate
was maintained at a temperature of 300 °C for a deposition time
of 60 minutes. After the deposition the bubblers were closed
and the substrates were cooled under a flow of air. The glass
substrate was allowed to cool with the graphite block to less
than 100 °C before it was removed. Coated substrates were
handled and stored in air. The coated glass substrate was cut
into ca. 1 cm x 1 cm squares for subsequent analysis.

Film characterisation

Powder X-ray diffraction (PXRD) patterns were measured in
a modified Bruker-Axs D8 diffractometer with parallel beam
optics and a PSD LynxEye silicon strip detector. This instrument

, Glass top plate

N
Heater "

~ = = Aerosol mist LN

- _ FTO substrate
= = Precursor solution

~ =~ - Piezoelectric device

Fig. 2 Schematic of the AACVD used for the deposition of BiOX films
on FTO substrates. The aerosol mist of the precursor solution that was
generated by a piezoelectric device was carried over the heated FTO
substrate in the CVD reaction chamber using air.

Chem. Sci,, 2016, 7, 4832-4841 | 4833
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uses an unmonochromated Cu Ko source operated at 40 kV with
a 30 mA emission current. The incident beam angle was set at 1°
and the angular range of the patterns collected was 8° < 26 < 66°
with a step size of 0.05° counted at 0.5 s per step. Scanning
electron microscopy (SEM) was performed to determine surface
morphology and film thickness using a JEOL JSM-6301F Field
Emission SEM at an accelerating voltage of 5 keV. Optical
spectra were obtained using a Perkin Elmer Fourier transform
Lambda 950 spectrometer over a wavelength range of 300 nm to
1100 nm (4.1 eV to 1.1 eV). This range embraces the ultraviolet
(UV), visible and near infrared (NIR) regions. The spectra were
referenced against an air background. X-ray photoelectron
spectroscopy (XPS) was performed in a Thermo Scientific
K-alpha photoelectron spectrometer using monochromatic
Al-Ka radiation. Survey scans were collected in the range 0-
1100 eV (binding energy) at a pass energy of 160 eV. Higher
resolution scans were recorded for the main core lines at a pass
energy of 20 eV. Valence band spectra were also recorded. Peak
positions were calibrated to carbon and plotted using CasaXPS
software.

Photoelectrochemical testing

The PEC measurements were conducted in a three-electrode cell
equipped with a quartz window and potentiostat (Ivium tech-
nology). The as-prepared films were used as the working elec-
trodes. Pt mesh and Ag/AgCl (3 M KCl) were used as counter
electrodes and reference electrodes, respectively. The scan
speed was 20 mV s~ " between —0.5 and 1.5 V (vs. Ag/AgCl). The
electrolyte was 0.5 M Na,SO, (pH 6.5) aqueous solution,
degassed with argon for 30 min. A 150 W xenon lamp (Newport,
USA) equipped with an AM 1.5 G filter was used to irradiate the
electrodes from the front side and was calibrated to 1 sun
illumination (100 mW cm™?) using a photodiode. Mott-
Schottky (impedance) plots were obtained at a frequency of 1
kHz in the dark with an AC amplitude of 5 mV. The flat band
potential (Vg,) was determined by eqn (1):

1 2 (V — Vi — kBTT) (1)

C?  geeNy

here N, is the carrier density, ¢, is the permittivity in a vacuum,
& is the relative permittivity, V is the applied potential, T is the
absolute temperature, e corresponds to the electronic charge,
and kg is the Boltzmann constant. Hence a plot of 1/C” vs.
potential (V) will yield a line, which when extrapolated to the
x-axis, will correspond to the flat-band potential of the semi-
conductor.” Potentials were referenced to the reversible
hydrogen electrode (RHE) using the Nernst equation (eqn (2)):

Erue = Eagagal + Eagagar + 0.059pH, EXgagci
—0.1976 at 25 °C )

Computational methods

All electronic structure calculations were performed using the
Vienna Ab initio Simulation Package (VASP),*"** a periodic plane
wave DFT code which includes interactions between the core

41-44
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and valence elections using the Project Augmented Wave (PAW)
method.*”* Both the plane wave basis set and k-point sampling
were checked for convergence, with a cutoff of 520 eV and
k-point grid of I'-centred 6 x 6 x 2, and for the unit cell of BiOX
were found to be sufficient. Geometry optimization was per-
formed using the Heyd-Scuseria-Ernzerhof (HSE06) hybrid
DFT functional*® with the inclusion of Grimme's D3 correc-
tion,* which deals with the inability of DFT to describe weak
dispersion interactions. Relativistic spin orbit effects (SOC)
were included for the band structure calculations, as materials
containing heavy elements such as Bi and I are known to display
large relativistic renormalization.**~>°

Results and discussion

BiOX (where X = Cl, Br, I) films were deposited on FTO
substrates from the AACVD reaction of BiX; and N,N-dime-
thylformamide at 300 °C. The films were uniform, showed
excellent coverage across the FTO substrate and were well
adhered, passing the Scotch™ tape test.

XRD, SEM, optical and XPS characterization

X-ray diffraction patterns of the as-deposited films formed by
AACVD (Fig. 3) confirmed the presence of BiOX (X = Cl, Br, I).
All the films were phase pure and crystallised in the expected
tetragonal matlockite structure. The BiOI films displayed
pronounced (011) texture. This is in contrast to previous reports
on spray deposited BiOI thin films displaying preferred (102)
followed by (110) orientation.** The BiOBr films exhibited (001)
and (101) texture, whereas the BiOCl films showed mainly (101)
and (110) texture. It has been noted before in the literature that
this texture/faceted nature of the crystals may be beneficial in
establishing internal electric fields aiding electron-hole charge
separation in these materials.*

(101) (102)

(110)
N

001 (200)
0 U VL
(102) (110) BiOCI Film on FTO Glass
(001) (104) (202)
LA DRI | R S O O
(001) BiOBr Film on FTO Glass
| .
|/ (002) L 012« A (14

BiOI Film on FTO Glass

_J—J \.—}Ul.k__l\___l\_._Jt__A_L,qu\__)\__»L.__

BiOCI Simulated Pattern

L | ‘h . N |

b BiOBr Simulated Pattern
_J\ J FREN e A l

BiOIl Simulated Pattem
L s e

Offset Intensity

T T T T T T T T T T T T T T T

10 15 20 25 30 35 40 45 50 55 60 65
26 (%)
Fig. 3 PXRD of BiOX (X = Cl, Br, I) films deposited on FTO glass from
the AACVD reaction of BiXs/DMF in air at 300 °C along with simulated

BiOX patterns. The asterisked peaks correspond to positions of
reflections from the F : SnO (FTO) substrate.
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The film microstructure was probed using SEM as shown in
Fig. 4. BiOI and BiOCl films consist of a nanoplatelet
morphology with the platelets (i.e. grains) ranging from 0.5-
1 pum (BiOI) and at ~1 pm (BiOCl) while having a thickness
within the nano regime (50 and 250 nm, respectively). The
BiOBr sample however consists of clusters of crystallites
contributing to the particles resembling nanoflowers. The
clusters were around 1 pm in diameter and appear to be
composed of smaller crystallites. As mentioned before, the
electronic properties of these materials are anisotropic and this
faceted growth may help charge carrier mobility along certain
facets. Optical spectra across the UV, visible and near IR regions
were collected for the BiOX thin films and the absorbance data
is plotted from 300 nm to 1100 nm in Fig. 5a. As shown, the
absorption edge decreases in energy with halide anion going
down group 17. Fig. 5b shows the Tauc plot of (ahv)"? versus
photon energy (hv) for BiOX (X = Cl, Br, I). Note the use of the
indirect Tauc relation. It can be seen that BiOCl exhibits the
largest indirect bandgap of around 3.3 eV, within the UV region.
For BiOBr however, the indirect bandgap red shifts to a value of
2.7 eV (corresponding to 460 nm). Moving to BiOI, the bandgap
shifts further into the visible region with a value of around
1.8 eV (690 nm light). These values are in excellent agreement
with reported literature on these materials prepared by other
routes.’***33

BiOX core level X-ray photoemission spectroscopy (XPS) was
performed on all of the samples as shown in Fig. 6 to probe the
surface composition. Fig. 6a shows the core level XPS for BiOCl.
For clarity, only the metal and halide transitions are shown. The
binding energy for the Bi 4f;, transition at 159.7 eV clearly
corresponds to Bi**.*** There is a minor metallic bismuth (Bi°)
component corresponding to a Bi 4f;, transition at a binding
energy of 157.9 eV. The ClI~ 2p;, and 2p,,, transitions were
observed at binding energies of 198.4 eV and 200 eV, respec-
tively. This metallic bismuth component has been observed in
many reports but is often not discussed. The nature of metallic
bismuth could well be due to instability of the material under
incident X-rays resulting in photoreduction to metallic
bismuth. This has been observed before in bismuth based
materials and also in similar compounds such as CH;NH;Pbl;
where a metallic lead signal is found.***” Fig. 6¢ shows the core
level XPS for BiOBr. The binding energy for the Bi 4f;,

View Article Online
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Fig. 5 (a) UV/vis spectra of BiOX (X = Cl, Br, |) films deposited on FTO
glass and (b) corresponding Tauc plots.

transition at 159.4 €V clearly corresponds to Bi**.*® There also
appears to be a minor metallic bismuth component in this
sample but it is significantly reduced in comparison to the
BiOCI film. Again, the least-squares fit is markedly improved
with metallic bismuth components included in the model. The
bromide peaks correspond to binding energies of Br~ and agree
well with literature values.*® Fig. 6e shows the core level XPS for
BiOI. The binding energy for the Bi 4f;, transition at 159.2 eV
matchs with Bi in the 3+ oxidation state.*® Similar to BiOBr, the
metallic bismuth component is less than in the case of BiOCI.

Fig. 4 SEM images of (a) BiOl, (b) BiOBr and (c) BiOCl thin films deposited on FTO glass from the AACVD reaction of BiXs/DMF in air at 300 °C.

Insets show a higher magnification image of the same area.

This journal is © The Royal Society of Chemistry 2016
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Fig.6 Core level X-ray photoemission spectra of (a) BIOCl on FTO glass showing the Bi®* 4f,,, and 4fs, transitions, with a minor Bi®®
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at a lower binding energy. (b) Cl™ 2ps,» and 2py,» transitions are also shown. (c) BiOBr on FTO glass showing the Bi** 4f,,, and 4fs,, transitions

with a minor Bi®®

showing the Bi®* 4f,,, and 4fs,, transitions with a minor Bi©

The binding energy of the iodide transitions are consistent with
the literature.*

Electronic structure

The valence band maximum for BiOX crystals is known to be
comprised of O 2p orbitals and X np states (n = 3, 4, 5 and X =
Cl, Br and I, respectively). The conduction band minimum is
mainly comprised of Bi 6p states. As X gets larger, the contri-
bution of X ns states increases. This results in a narrowing of the
bandgap as seen experimentally through valence band XPS and
optical data as well as theoretically through DFT calculations.
The predicted values of the bandgaps of BiOCl, BiOBr and BiOI
are ca. 3.4, 2.8 and 2.0 eV, although it should be noted that these
do not include thermal effects. Valence band X-ray photoemis-
sion spectra are shown in Fig. 7. To understand the orbital

4836 | Chem. Sci., 2016, 7, 4832-4841

component at a lower binding energy, along with the corresponding Br~ 3ds,» and 3ds,, transitions (d). (e) BiOl on FTO glass
component at a lower binding energy, with I~ 3ds,, and 3ds,, transitions (f).

make-up of the valence band and further confirm that the
correct material had been deposited, we have compared the XPS
spectra to simulated XPS VB spectra calculated using the HSE06
functional with relativistic corrections (spin-orbit coupling).
The simulated XPS VB spectra were obtained by scaling the
calculated partial density of states using atomic orbital photo-
ionisation cross-sections® and broadened using a 0.47 eV
Gaussian function to simulate experimental broadening. The
spectra are dominated by a broad valence band of O 2p states
extending from the valence band onset to about 6-8 eV binding
energy, in excellent agreement with the calculated electronic
structure. By simple linear extrapolation, the valence band edge
for BiOI occurs at around 1.6 eV; for BiOBr occurs at around
2.2 eV and for BiOCI occurs at around 2.9 eV. However, the
absolute valence band edge positions cannot simply be derived
by linear extrapolation of the rising edge of the valence band to

This journal is © The Royal Society of Chemistry 2016
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Fig. 7 Normalized valence-band photoemission spectra of the series
of BiOX films prepared by AACVD, compared with HSE06 + D3 + SOC
simulated valence band XPS. Note the relative shift to a lower binding
energy from BiOCl to BiOl showing band gap narrowing as you move
down group 17 from Cl” to ™.

the baseline. According to the DFT calculations it has been
shown that there is a rapid onset of the valence band density of
states leading to an almost flat band. However, due to broad-
ening of lifetime and instrument effects of the spectrometer,
a significant slope to the measured onset of the valence band
was seen. Therefore, extrapolating to the baseline results in
a large underestimation in the VBM to surface Fermi level
separation. The relative change in positions is in agreement
with optical absorbance data.

Photoelectrochemical testing

Firstly, Mott-Schottky plots (impedance spectra) were recorded
to investigate whether the as-synthesised materials exhibited n-
or p-type behaviour and to determine the flat-band potentials.
From Fig. 8a, the M-S plot for BiOI displays n-type behaviour,
due to the negative slope which, when extrapolated to the x-axis,
yields a flat-band value of —0.3 V vs. Ag/AgCl (+0.58 V vs. RHE).
Taking the typical difference between the conduction and flat-
band potentials to be ca. 0.3 V, the conduction band edge may
be approximated to lie at +0.3 V vs. RHE.*' This is similar to the
value reported by Mullins for spray-deposited BiOI films that
also displayed n-type behaviour.”® Given that the measured

View Article Online
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indirect bandgaps of our BiOI films is 1.7 €V, the location of the
valence band edge would correspond to 2 eV vs. RHE, indicating
that the material could be utilised for photo-assisted water
oxidation but not reduction. For AACVD-grown BiOClI films, the
M-S plot revealed p-type behaviour due to the negative direction
of the slope as shown in Fig. 8b.

The flat-band position was calculated to be 2.15 V vs. Ag/AgCl
(2.73 Vvs. RHE), therefore the valence band position equates to
roughly 2.43 Vvs. RHE, and given that the bandgap of our BiOCl
is 3.2 eV, the CBE position is —0.77 V vs. RHE. This suggests that
BiOCI could be utilised as a potential photocathode for water
splitting. The M-S plot for the BiOBr film reveals n-type
behaviour (Fig. 8c), with a flat-band potential of —0.44 V vs.
Ag/AgCl (0.14 V vs. RHE), therefore a conduction band position
of —0.16 Vvs. RHE, in good agreement with previous reports.®* A
valence band position of 2.44 V was calculated based on the
bandgap value of 2.6 eV.

Therefore, we can construct a band diagram depicting the
valence and conduction band positions of several bismuth
oxyhalides with respect to the potentials of water splitting (at
pH 0), see Fig. 9. Note the calculated CB minima for our AACVD
grown BiOCl and BiOI film is more negative than the H,
evolution potential, this has been previously reported in the
literature.®***
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Fig.9 The band positions of the bismuth oxyhalide films compared to
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A recent review paper highlighted that bismuth oxyhalides
exhibit appreciable activity for organic decomposition, however
it was also mentioned that they have been rarely used for solar
fuel processes, such as water splitting and CO, photoreduc-
tion.®® To address this and to gain a fuller understanding of
their photophysical properties, we tested the BiOX films syn-
thesised via AACVD for photoelectrochemical properties under
100 mW cm~? illumination in 0.5 M Na,SO, electrolyte. The
current-voltage plot for the BiOCI film shows some photo-
cathodic activity compared to the dark current, exhibiting
a current of ca. —1 mA cm > at —0.4 V (vs. Ag/AgCl), however
a very small anodic current was observed, approximately 0.1
mA cm 2 at 1.2 V (vs. Ag/AgCl) (see ESI{). This is somewhat in
agreement with the measured flat-band potential of the mate-
rial, which suggested that it could show photocathodic activity.
Furthermore, the applied bias-photon-to-current conversion
efficiency (ABPE) was calculated to be 0.04%. The stability test
of the same film recorded at an applied voltage of —0.4 V vs.
Ag/AgCl is shown in the ESL.

Altogether the stability is relatively poor; the current actually
increases then decreases, most probably due to photocorrosion.
The cathodic photocurrent decreases by 25% after just
10 minutes of illumination. This clearly shows that BiOCl may
be unsuitable for photocatalytic applications, particularly water
splitting, in the absence of a protective coating. This issue is
common for other photoactive materials such as Cu,0, which
requires typically ALD grown protective layers of ZnO and Al,0O;
to help slow down corrosion in water during illumination.®®

The appearance of the BiOCI film after testing changed to
black in colour, and photocorrosion to Bi metal species was
confirmed via XRD analysis (not shown herein). Recently, the
coupling of BiOCl with other metal oxides into a junction
structure has resulted in improved performance for PEC water
splitting; however in all such cases the performance of the bare
BiOCl was either not reported or not addressed.®”*® On the other
hand, photocatalytic testing of BiOBr revealed good photo-
anodic activity, exhibiting a photocurrent of ca. 0.38 mA em™” at
1 V vs. Ag/AgCl, see Fig. 10a. The ABPE of the BiOBr film was
0.25%.

To the best of our knowledge, this is the highest photocur-
rent recorded for BiOBr electrodes without the use of a sacrifi-
cial electron donor. It is also over three times higher than that
recorded for BiOBr-reduced graphene composite electrodes
tested under similar conditions (ca. 75 pA cm™? at 0.45 vs.
Ag/AgCl).*> Improved photocurrent and photocatalytic activity
has recently been reported for (001) oriented BiOBr samples for
both organic contaminant decomposition and nitrogen fixa-
tion.®** In fact, we find that both the (001) and (101) facets are
dominant in our samples as evidenced from XRD analysis,
suggesting that at least a proportion of the improved photo-
catalytic activity is from charge transfer and separation along
the (001) facet. The stability of the material was also tested at an
applied potential of 1.0 V vs. Ag/AgCl for 1 hour duration,
revealing a ca. 23% decrease by the end of the experiment and
no obvious change in appearance of the film (Fig. 10b). This test
was for considerably longer than that reported previously in the
literature. The slow photocorrosion of BiOBr is due to self-
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Fig. 10 (a) The current—voltage behavior of the AACVD grown BiOBr
film under 100 mW cm ™2 illumination in 0.5 M Na,SO,4 electrolyte. A
photocurrent of ca. 0.38 mA cm ™2 at 1V vs. Ag/AgCl was observed. (b)
The stability of the BiOBr film at an applied voltage of 1.0 V vs. Ag/AgCL.
There was a 23% decrease after 1 hour.

reduction to Bi metal caused by photogenerated CB electrons;
the application of an external bias does alleviate this by electron
transfer to the counter electrode, although not 100% efficient.
The complex mechanism of photocorrosion and electrode
regeneration in these BiOX materials has already been dis-
cussed,” but can be summarised as follows:

BiOX + 2H" + 3¢~ — Bi + X~ + H,0O (3)

As our electrolyte was de-aerated, dissolved oxygen cannot
act as an electron acceptor and therefore cannot protect BiOX as
suggested in the above reference. Thus, we suggest a further
option would be to add a passivation layer or to add a surface
oxidation catalyst, which will separate surface electrons and
holes and permit more efficient electron transfer to the counter
electrode.'>”*

Finally, BiOI synthesized via AACVD was tested for its PEC
performance (Fig. 11a). To the best of our knowledge, this is the
first report of the photoelectrochemical activity of BiOI. Anodic
behaviour was observed, in agreement with the shape of the
Mott-Schottky plot, with a maximum photocurrent of 0.15

This journal is © The Royal Society of Chemistry 2016
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Fig. 11 (a) The current—voltage behavior of the AACVD grown BiOl
film under 100 mW cm~2 illumination in 0.5 M Na,SO, electrolyte. A
photocurrent of ca. 0.15 mA cm™2 at 1V vs. Ag/AgCl was observed. (b)
The stability of the BiOBr film at an applied voltage of 0.5 V vs. Ag/AgCL.
There was rapid decay after just 100 seconds.

mA cm > at 1 V vs. Ag/AgCl and an ABPE of 0.07%. The dark
current at this voltage was fairly high at 0.025 mA cm 2,
indicative of the material's limited stability, particularly at
higher applied potentials. To highlight this, a stability test was
performed at an applied voltage of 0.5 V vs. Ag/AgCl (Fig. 11b).
To our surprise, BiOI exhibited an extremely rapid decay in
photocurrent, and no photocurrent was observed after a period
of just 100 seconds.

Overall, it was found that the stability of BiOBr is much
superior to that of both BiOI and BiOCIl under the present
experimental conditions, which could have important implica-
tions for their future use in photo-assisted water splitting
reactions. We suggest that the enhanced water oxidation
property of BiOBr is mainly due to the very positive VB position,
which possesses a higher overpotential for water oxidation
compared to the other BiOX materials (Fig. 9). This is in addi-
tion to the dominant (001) facet in our AACVD grown BiOBr
films which allows for improved charge separation. The poor
stability of BiOI is of particular concern, whilst there are several
reports of this material being used for degradation of organic

This journal is © The Royal Society of Chemistry 2016
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dyes and pollutants, it cannot be used for water splitting reac-
tions due to its facile photo-degradation.

These results should serve as a caution for those intending to
utilise untreated bismuth oxyhalides for applications in pho-
tocatalytic systems. It may prove possible to enhance stability
through morphological control. Otherwise, the use of co-cata-
lysts or protection layers should be explored in order to extend
the stability of these materials towards practical applications.

Conclusion

In conclusion, AACVD was used to grow a series of phase pure
tetragonal matlockite structured BiOX (X = Cl, Br, I) films at 300
°C. SEM micrographs showed nanoplatelet morphology for
BiOCl and BiOI whereas nanoflower like particles were observed
for the BiOBr film. The optical bandgap calculations of the films
agreed well with first-principles calculations that explained that
the narrowing of the bandgap is due to the variation in the
energy of the halide p orbitals that form the upper valence band.
Functional testing showed that untreated BiOCl (p-type) and
BiOI (n-type) were both unsuitable for photoelectrochemical
applications as they showed poor stability. BiOBr revealed good
photoanodic activity with a photocurrent of ca. 0.38 mA cm ™ at
1 V vs. Ag/AgCl - the highest photocurrent recorded for BiOBr
electrodes without the use of a sacrificial electron donor. BiOBr
also showed good stability, far better than BiOCI and BiOI under
the testing conditions.
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