Volume 210, 2018

Nanoscale electrochemical movies and synchronous topographical mapping of electrocatalytic materials

Abstract

Techniques in the scanning electrochemical probe microscopy (SEPM) family have shown great promise for resolving nanoscale structure–function (e.g., catalytic activity) at complex (electro)chemical interfaces, which is a long-term aspiration in (electro)materials science. In this work, we explore how a simple meniscus imaging probe, based on an easily-fabricated, single-channeled nanopipette (inner diameter ≈ 30 nm) can be deployed in the scanning electrochemical cell microscopy (SECCM) platform as a fast, versatile and robust method for the direct, synchronous electrochemical/topographical imaging of electrocatalytic materials at the nanoscale. Topographical and voltammetric data are acquired synchronously at a spatial resolution of 50 nm to construct maps that resolve particular surface features on the sub-10 nm scale and create electrochemical activity movies composed of hundreds of potential-resolved images on the minutes timescale. Using the hydrogen evolution reaction (HER) at molybdenite (MoS2) as an exemplar system, the experimental parameters critical to achieving a robust scanning protocol (e.g., approach voltage, reference potential calibration) with high resolution (e.g., hopping distance) and optimal scan times (e.g., voltammetric scan rate, approach rate etc.) are considered and discussed. Furthermore, sub-nanoentity reactivity mapping is demonstrated with glassy carbon (GC) supported single-crystalline {111}-oriented two-dimensional Au nanocrystals (AuNCs), which exhibit uniform catalytic activity at the single-entity and sub-single entity level. The approach outlined herein signposts a future in (electro)materials science in which the activity of electroactive nanomaterials can be viewed directly and related to structure through electrochemical movies, revealing active sites unambiguously.

Graphical abstract: Nanoscale electrochemical movies and synchronous topographical mapping of electrocatalytic materials

Associated articles

Supplementary files

Article information

Article type
Paper
Submitted
12 ফেব্রু. 2018
Accepted
19 মার্চ 2018
First published
22 মার্চ 2018

Faraday Discuss., 2018,210, 365-379

Nanoscale electrochemical movies and synchronous topographical mapping of electrocatalytic materials

C. L. Bentley and P. R. Unwin, Faraday Discuss., 2018, 210, 365 DOI: 10.1039/C8FD00028J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements