Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

Open Access Article. Published on 24 2025. Downloaded on 8.2.2026 . 21:04:58.

(cc)

Environmental Science

Advances

CRITICAL REVIEW

i '.) Check for updates ‘

Cite this: Environ. Sci.: Adv., 2025, 4,

1939

Received 3rd December 2024
Accepted 5th September 2025

DOI: 10.1039/d4va00405a

rsc.li/esadvances

#® ROYAL SOCIETY
PPN OF CHEMISTRY

View Article Online
View Journal | View Issue

Potential human health effects of per- and
polyfluoroalkyl substances (PFAS) prevalent in
aquatic environment: a review
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The widespread incorporation of per- and polyfluoroalkyl substances (PFAS) in various daily-use items has
garnered considerable attention regarding environmental and health hazards in the last decade. Among
different categories of PFAS, a paradigm shift has occurred towards short-chain PFAS alternatives like
GenX, ADONA, and F53B, driven by environmental considerations and regulatory changes. Exposure to
PFAS can happen through consuming contaminated food and drink, inhaling contaminated dust, or
skin contact with PFAS-containing objects. Furthermore, occupational exposure might result from
manufacturing and firefighting operations employing fluorinated compounds. In humans and monkeys,
perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) exhibit an increased affinity for
plasma proteins. However, the exact extent of this affinity is still a matter of research. The buildup of
PFOS in the liver might cause injury or dysfunction by interfering with its regular operation. Compared
to other human tissues, the liver has been shown to accumulate higher amounts of PFOS. Although
there is an absence of epidemiological studies on PFOS, a possible connection between the health
disorder and elevated cholesterol levels has been established by many researchers. Considering the
transition as a future environmental burden, this review aims to bring together ongoing research
compilations on short-chain PFAS, delving into their persistence, prevalence, and bioaccumulative
toxicity in aquatic environments and focusing on critical areas of research gaps. An extensive literature
analysis assessed the relative abundance of short-chain compounds compared to their long-chain
counterparts within aquatic ecosystems. US EPA has setup new guidelines specifically for drinking
water for PFOA and PFOS compounds which is 4 ppt. Furthermore, this review highlights emerging
regulatory measures being implemented worldwide to safeguard public health. These measures
encompass a range of strategies, from the European Union's emphasis on banning certain
manufacturing and production practices under the REACH regulations to establishing exposure limits
and disposal protocols in the United States.
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The widespread incorporation of per- and polyfluoroalkyl substances (PFAS) in various daily-use items has garnered considerable attention regarding envi-

ronmental and health hazards in the last decade. Among different categories of PFAS, a paradigm shift has occurred towards short-chain PFAS alternatives like
GenX, ADONA, and F53B, driven by environmental considerations and regulatory changes. Exposure to PFAS can happen through consuming contaminated
food and drink, inhaling contaminated dust, or skin contact with PFAS-containing objects. The significant of the current review is distinct from previous works,

focusing specifically on consolidating recent literature concerning short-chain PFAS and providing insights into the regulatory measures implemented and
adopted globally to address the persistent environmental presence and human health risks posed by PFAS.

1. Introduction

Per- and polyfluoroalkyl substances (PFAS) have seen extensive
global use in various consumer products since the mid-20th
century. These compounds are commonly integrated into
everyday items to fulfill multiple purposes, such as preventing
food adhesion to packaging or cookware, imparting stain
resistance to textiles and carpets, and enhancing the efficacy of
firefighting foam (SI Fig. S1). Perfluorooctane sulfonate (PFOS)
and perfluorooctanoic acid (PFOA) are known for their
remarkable resistance to degradation, which contributes to
their persistent presence in the environment over time.*

PFAS molecules are interconnected carbon and fluorine
atoms, forming strong carbon-fluoride bonds. Due to this
bond's resilience, these chemicals do not readily degrade in
nature. PFOS and PFOA have garnered significant attention as
persistent organic pollutants (POPs) because of their unnoticed
existence in the environmental ecosystem, including human
serum and tissues.> They are classified as long-chain PFAS,
distinguished by their eight-carbon backbone with sulfonate
and carboxylate functional groups. Their ability to repeal water
(hydrophobicity) and oil (oleophobic), combined with a variety
of other chemical attributes, renders them valuable in a myriad
of consumer goods.>*

The adoption of shorter-chain PFAS over long-chain mole-
cules in the early 2000s marked a shift towards using
compounds with carbon backbones containing fewer than
seven carbons in industrial and environmental applications.®
Noteworthy among these shorter-chain substitutes are GenX
(hexafluoropropylene oxide dimer acid (HFPO-DA)), ADONA
(4,8-dioxa-3H-perfluorononanoate), and F53B (chlorinated
polyfluoroalkyl ether sulfonate),which have gained widespread
usage.® GenXis employed in various industrial processes.”
ADONA is applied as a replacement for PFOA in synthesizing
fluoropolymers,"® whereas F53B serves as a replacement for
PFOS and functions as a mist suppressant in electroplating
processes.”'® Despite extensive research on the toxicity and
health impacts of PFAS, gaps remain in understanding the
unique challenges posed by short-chain variants.**

While existing literature, including comprehensive reviews
and empirical studies, has explored the effects of PFAS
primarily in rodents, wildlife, fish, and through human autopsy
cases, there is a critical need for deeper analysis into the
impacts on other animal species and studies on human
health.**® Furthermore, the effectiveness of global regulatory
responses to PFAS, key emerging contaminants, exhibits
significant variability across different jurisdictions. This
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inconsistency complicates efforts to mitigate the environmental
and health impacts of PFAS and hampers the ability to conduct
comprehensive, comparative analyses of policy efficacy.

Divergent regulatory landscapes, ranging from stringent
prohibitions in some countries to more lenient guidelines in
others, pose a challenge for multinational enforcement and
global environmental protection strategies. Furthermore, the
lack of uniform standards impedes the development of inter-
national agreements that could facilitate more effective
management of PFAS pollution. The primary objective of the
current review is distinct from previous works, focusing specifi-
cally on consolidating recent literature concerning short-chain
PFAS and providing insights into the regulatory measures
implemented and adopted globally, which is the novelty aspect
of the current review. The specific objectives of this review are: (i)
providing a comprehensive survey to compare the persistence
and prevalence of short-chain molecules with their long-chain
counterparts in aquatic environments, (ii) identifying knowl-
edge gaps by conducting an in-depth literature review on the
bioaccumulation of ADONA and GenX in various aquatic
organisms and assessing potential eco-toxicological implica-
tions, and (iii) evaluating the human health risks connected with
exposure to short-chain PFAS. Lastly, this review seeks to evaluate
how these disparate regulatory frameworks influence PFAS
management and control, aiming to identify best practices and
recommend approaches for regulatory harmonization that could
enhance global efforts to address the persistent environmental
presence and human health risks posed by PFAS.

2. Methodology

The literature survey details on the potential health effects of
PFAS on human health are presented in SI Fig. S2(a—c), which
schematically shows the workflow for the bibliometric analysis
that led to the narrowed set of references used in this review.
This analysis also indicates how the various selection criteria
were grouped (SI Fig. S2b) and gives a keyword co-occurrence
map (SI Fig. S2c) related to the searched topics. A literature
search was conducted in Science Direct, Google Scholar,
PubMed, and Web of Science Core Collections with the
following searching terms: TS=(“per- and polyfluoroalkyl
substances (PFAS)” OR “human health” OR “aquatic environ-
ment”) AND TS=(“source” OR “GenX” OR “men” OR “women”
OR “short-chain PFAS” OR “drinking water” OR “cancer”) AND
TS=(“contamination” OR “contaminant” OR “pollutant” OR
“toxic”). A total of 1731 results were retrieved and visualized
using the VOSviewer software (version 1.6.19).

© 2025 The Author(s). Published by the Royal Society of Chemistry
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3. Categories of PFAS

PFAS can be divided into two primary categories: polymer and
non-polymer types (Fig. 1). Polymer PFAS can be divided into
fluoropolymers, side-chain fluorinated polymers, and per-
fluoropolyether (PFPESs). Fluoropolymers are characterized by
carbon-only backbones with directly bonded fluorine atoms
such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride
(PVDF), fluorinated ethylene propylene (FEP), and per-
fluoroalkoxy alkanes (PFA).”*° Another category, side-chain
fluorinated polymers, features non-fluorinated carbon back-
bones with polyfluoroalkyl side-chains of varying compositions.
PFPEs, the third group, are fluorinated polymers with carbon
and oxygen backbones, directly connected to fluorine atoms.
Non-polymer PFAS include perfluoroalkyl carboxylic acids
(PFCAs) and perfluoroalkane sulfonic acids (PFSAs), with legacy
compounds like PFOA and PFOS, and short-chain alternatives
such as PFHxA, PFBS, GenX, and ADONA. Perfluorononanoic
acid (PFNA), another long-chain PFCA, is also a non-polymer
PFAS, though it has been historically used as a processing aid
in fluoropolymer production. In addition, polymer PFAS, such
as fluoropolymers (e.g., PTFE and PVDF), are generally less
bioavailable but may degrade into non-polymer PFAS under
certain conditions. Hence, this review primarily focuses on non-
polymer PFAS, especially short-chain variants, due to their
widespread occurrence in aquatic environments, increased
mobility, and emerging regulatory concern. These compounds
differ significantly in environmental occurrence, behavior, and
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toxicity, which are the core topics addressed in the following
sections.

3.1. Occurrence of short-chain PFAS in aquatic environment

Short-chain PFAS like ADONA, HFPO-DA, and chlorinated poly-
fluorinated ether sulfonate (6:2 CI-PFAES) have been under
environmental surveillance alongside other associated
compounds.” 6 : 2 CI-PFAES has been notably found in industrial
effluent from chrome plating facility in Hangzhou Bay, China,
exhibiting extremely high levels ranging from 150 to 155 pg L'
A similar study reported high concentrations in effluent, with
levels ranging from 980 to 985 pg L~ '. Additionally, systematic
detection in municipal sewage sludge samples across China
revealed a median value of 1.94 ng L™'.%? Its environmental
distribution was confirmed by its detection in remote Polar
Regions, suggesting its ability to undergo long-range transport.*

HFPO-DA (Gen-X) has been identified in surface waters in
Germany and the Netherlands, particularly downriver from
fluorochemical production units, reaching concentrations of
~800 ng L *.2*? It was found during a comprehensive survey of
surface waters across China, European countries, Korea, and
the USA, showing 0.18 to 144 ng L' concentration levels.?*2°
ADONA, identified in the Rhine River (Europe) water samples
with a 75% detection frequency, generally exhibited low
concentrations ranging from less than 0.01 to 1.5 ng L~ ".3%%
These compounds' environmental presence is concerning,
primarily due to their high mobility in soil and water systems.*”
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Fig. 1 Schematic representation of different categories PFAS, mainly polymer and non-polymer types.
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Furthermore, certain research findings indicate that their ulti-
mate degradation byproducts exhibit persistence.**

Additionally, the data from 15 countries covering the
occurrence of short-chain PFAS in various drinking water
matrices (tap, bottled, and groundwater) was collected and
tabulated. Table 1 includes 13 short-chain PFAS, with PFBA,
PFPeA, PFHXA, PFBS, and PFHXS being the most frequently re-
ported across global studies. The Netherlands reported the
highest diversity with 13 short-chain PFAS detected in treated
waters, including ultra-short-chain compounds like tri-
fluoroacetic acid (TFA) and 6:2 diPAP, with concentration
ranges reaching up to 520.9 ng L' for TFA. China demon-
strated the highest concentrations overall, with PFBA and
PFHxA exceeding 9000 ng L™" and 8000 ng L™ respectively in
drinking water sources near a former fluorochemical facility.
Singapore, South Korea, and Norway reported moderate levels
(typically <10 ng L"), suggesting a relatively lower burden or
effective regulatory mitigation. The US and Canada revealed
a widespread but moderate-level presence of multiple SC-PFAS
in bottled and municipal waters.

Countries such as India, Brazil, and Spain showed notable
occurrence of PFBS and PFHxA in both groundwater and
household drinking water sources, indicating ongoing exposure
risks in developing and middle-income regions (SI Fig. S3).

3.2. Exposure to PFAS and their negative health impacts

PFAS exposure can occur through polluted food and water
ingestion, contaminated dust, air inhalation, and dermal

Increased cholesterol
level and risk of hea

attack 0 ,
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contact with PFAS materials (Fig. 2).The United States Food and
Drug Administration's(US FDA's) seafood survey in 2022
concluded that water and seafood were the most generic
supplies (74%) of PFAS exposure for the public.** Additionally,
certain occupations, such as firefighting and manufacturing,
involving PFAS-containing products can cause occupational
exposure.*

However, data regarding the adverse impacts of PFAS on
other animal species and humans remains limited (Fig. 2).
Studies have advocated that the long half-lives of PFAS in
humans may be due to their strong binding to plasma
proteins.**** Both PFOA and PFOS demonstrate a heightened
attraction to plasma proteins in monkeys and humans,
although the precise degree of binding remains incompletely
characterized. PFOS tends to accumulate more prominently in
the liver and serum, carrying significant implications.*® Accu-
mulation of PFOS in the liver can disrupt its normal functioning
and potentially lead to liver damage or dysfunction.’” Higher
levels of PFOS accumulation in hepatic tissues maybe attributed
to enterohepatic recirculation, wherein PFOS is excreted in bile
and subsequently reabsorbed from the gut.*®* In the blood-
stream, PFOS in the serum can circulate throughout the body,
potentially affecting various organs and systems. During the
1990s, studies conducted in the United States revealed that
serum samples from pooled blood banks had average PFOS
concentrations ranging from 28 ng g~ ' to 44 ng g~ .** Similarly,
research conducted in Europe reported mean serum PFOS
concentrations of 17 ng g * in Belgium, 53 ng g ' in the
Netherlands, and 37 ng ¢~ ' in Germany, all based on pooled

“
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Fig. 2 Exposure pathways and health effects of PFAS on human life.
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blood bank samples.***> Among 23 human donors with paired
samples, it was found that the mean PFOS concentrations were
20.8 ng g~ ' in the liver and 1.32 pg mL ™" in the serum.*

Several reviews have examined the prevalence of PFOA and
its involvement in a large population's health hazards, such as
immunomodulation.*®*** The earlier studies consistently
observed moderate increases in cholesterol and uric acid levels
with PFOA. However, results regarding long-term disorders with
an inflammatory component, such as diabetes and stroke, were
inconclusive. The same authors also reported reproductive and
developmental disorders in humans.** The study concluded
that low birth weight resulting from PFOA exposure was typical
and did not carry significant clinical implications. Granum et al.
(2013)* also reported alterations in serum immunoglobulin
levels, and male PFOA workers showed an association with
elevated monocyte counts in residents exposed to PFOA-
contaminated water, as Brieger et al. (2011)* reported. While
epidemiological data on PFOS is limited, existing information
suggests a potential link to health disorders associated with
increased cholesterol levels.

3.2.1. Health effects of short-chain PFAS. Short-chain PFAS
also affect human health, although their concentrations in
humans are usually below those linked to toxicity in laboratory
animals (Table 2). For instance, breast milk's highest reported
human PFAS concentration was 360 ng L™, significantly lower
than levels linked to adverse effects in laboratory experiments.®
A study spanning three years and involving 752 females in
China discovered a link between prenatal exposure to short-
chain PFAS like perfluorobutane sulfonate (PFBS) and per-
fluoroheptanoic acid (PFHpA), where alterations in fetal
gonadotropins were reported.”” An updated review, incorpo-
rating the effects of endocrine disruption due to exposure to
both short- and long-chain PFAS, found that these effects varied
depending on gender and the stage of development.

PFOA exposure has been associated with thyroid diseases,
and epidemiological research suggests a possible association
with human cancers.*® Young men experienced a decline in
semen quality after coming in contact with PFOS, PFHxS, and
PFOA.*” Furthermore, these three chemicals have been related
to early onset menopause in females, increased impulsivity, and
delayed puberty in children.*®** The presence of PFHXA and
PFBA in human autopsy tissues has revealed distinct patterns,
with PFHXA predominantly detected in the brain and liver,
while PFBA is frequently noticed and found at higher concen-
trations in the kidney and lung.>

3.2.2. Effects of short-chain PFAS in reproductive system of
animal models. Toxicity assessments on aquatic organisms
have revealed elevated CI-PFESAs (trade name F-53B) and
potassium salt of PFOS in zebrafish, ranging from 15.5 to
17 mg L™}, respectively.®® The contact with F53B led to a rise in
birth abnormalities, delayed egg emergence, and reduced
chances of survival among embryos.>*

Sub-chronic hepatotoxicity of CI-PFAES in mice was
observed, with fatty liver and indications of cell apoptosis and
proliferation in groups exposed to doses exceeding 0.2 mg per
kg per day.*® Mice exposed to GenX showed a higher occurrence
of placental abnormalities. In contrast, affected rats showed
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higher expression of peroxisome proliferator-activated receptor
(PPAR)-regulated genes in both livers, resembling the impacts
of PFOA noted previously. GenX exhibited developmental
toxicity in rats, leading to higher rates of neonatal deaths and
lower birth weights in those exposed from gestational day 8 to
postnatal day 2, with doses ranging from 1 to 125 mg per kg
per day.>**’

3.3. Toxicity studies of perfluoroalkylated compounds
(PFCs)

Although toxicity studies have historically focused on long-
chain PFAS (e.g., PFOS and PFOA), increasing use of short-
chain PFAS as replacements raises concerns regarding their
potential health impacts. This section reviews available toxicity
data, highlighting differences and similarities in the effects of
short-chain and long-chain PFAS. Where applicable, we relate
observed effects to molecular characteristics such as chain
length, functional groups, and physicochemical behavior such
as, bioaccumulation and mobility.

3.3.1. Cytotoxicity study. Cytotoxicity refers to the capa-
bility of a xenobiotic substance to cause damage or cell death in
living cells, often measured in biological and medical
contexts.”® It can manifest through various mechanisms, such
as cell membrane damage, interference with cellular metabo-
lism, or disruption of cellular DNA (Table 2). The severity of
cytotoxicity depends on factors like dose, exposure duration,
and cell/tissue sensitivity. Numerous studies have investigated
the impact of PFCs on reactive oxygen species (ROS) formation
in cultured cerebellar granule cells.® A detailed analysis of the
toxicity mechanisms is out of the scope of the present study.

Studies conducted using rat neuron cultures have elucidated
that the impact of PFCs is contingent upon their molecular
arrangement, characterized by a carbon chain ranging from 4 to
16 atoms, enclosed by fluorine atoms. These compounds often
contain a charged functional group, such as carboxylate,
sulfonate salt, or acid, at one end.”® Consequently, they have
been observed to markedly elevate ROS formation within cells,
potentially by activating pathways such as PPARa or nuclear
factor erythroid 2-related factor 2 (Nrf2). Although these effects
may not directly precipitate cell death, they induce oxidative
stress, damage DNA, and cause various physiological alter-
ations. While long-chain PFAS like PFOA and PFOS have been
well-documented for their cytotoxic effects,*® few studies
suggest that short-chain PFAS such as PFBS and PFHxA also
induce oxidative stress, although at typically higher concentra-
tions and with lower bioaccumulative potential.®~*> This
suggests reduced, but not negligible, toxicity for shorter-chain
analogs.

The concentrations of PFAS associated with adverse health
impacts in humans range from 2 to 20 ng mL™", as reported by
the NASEM in 2022.% However, individuals with occupational
exposure to PFAS may have higher serum levels, with typical
levels around 300 ng mL ™" for PFOS and approximately 2000 ng
mL~" for PFOA.*

3.3.2. Genotoxic effects. Genotoxicity refers to the process
wherein cell injury leads to direct changes and modifications in
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genetic material, encompassing DNA damage, gene mutations,
chromosomal defects, and alterations in genetic content.
Recent studies have employed genotoxicity assays on human
cells to evaluate the impact of oxidative stress-induced
genotoxicity.*

Experiments on HepG2 cells have shown that PFOA can
induce genotoxic effects. Research by ref. 66 and 67 suggested
that among various PFCs, only those with eight or nine carbon
atoms in their structure were capable of producing ROS or
causing DNA damage in HepG2 cells. However, the observed
impact was mild, and a clear dose-response relationship was
not established.®®**® PFCs also cause oxidative damage associ-
ated with nuclear receptor proteins that regulate gene
expression.”

3.3.3. Carcinogenic effects. Carcinogenic effects refer to
the ability of certain substances to cause cancer or enhance the
risk of developing cancer. Extensive examination of the toxicity
of PFOS and PFOA in rodents has shown severe hazardous
impacts, particularly with the potential for liver cancer. Studies
on rodents with long-term PFOA exposure reported an increase
in liver tumor cases.”

The carcinogenic potential of PFOA has been shown in
human MCF-7 breast cancer cells due to its estrogen-like
properties, indicating the endocrine-disrupting capabilities of
PFCs.”” Additionally, PFOA and perfluoro-n-decanoic acid
(PFDA) have been linked to an increased risk of breast cancer in
Chinese women. This association is attributed to the disruption
of hormone balance caused by the combined xenoestrogenic
and xenoandrogenic activities of serum POPs, thereby
increasing susceptibility to breast cancer.”

A study investigated the prevalence of cancer among workers
of a perfluorooctane sulfonyl fluoride (POSF) manufacturing
facility, finding that employees with higher exposure had
a higher incidence of deaths due to bladder cancer.” However,
there is still debate regarding a clear link between PFOA expo-
sure and human disease incidence.” Studies on rodents have
shown that PFOS and PFOA act as peroxisomal proliferators.
Notably, peroxisome proliferators' carcinogenic potential does
not appear to impact humans.”

The potential mechanisms of exposure to PFAS and cancer
development can be broadly categorized into four significant
aspects. Firstly, PFAS compounds can influence hormone
receptors and disrupt the delicate balance of the endocrine
system, leading to alterations in hormone receptors and
potential hormonal imbalances.”® Secondly, PFAS have been
found to activate a specific receptor known as PPARa. This
activation can induce oxidative stress within the body, a state
with excess harmful ROS. Oxidative stress is known to be
detrimental to cellular health and can contribute to the devel-
opment of cancer.”” The third mechanism involves PFAS-
induced epigenetic alterations, encompassing changes in DNA
methylation patterns. It also modifies gene expression-
regulating proteins, mostly histones. PFAS exposure-induced
epigenetic changes may contribute to tumorigenesis.” Lastly,
PFAS are associated with reproductive toxicity, potentially
increasing susceptibility to carcinogens and impacting breast
cancer risk.
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3.3.4. Immuno-toxicity. Exposure to foreign substances can
harm the immune system, potentially heightening the risk of
developing allergies later. While there might not always be
a direct link to inherited allergies, exposure to immunotoxic
chemicals can still influence immune function. The outcome of
such exposure depends on various factors, including age, sex,
and individual genetic makeup. A study by ref. 79 examined
different age groups, ranging from mother-newborn pairs to
adults aged 50-65. The study found that asthma, allergic
rhinitis, and eczema were prevalent among participants, with
approximately 30% of the total 1092 participants across the five
studies reporting these conditions. The study highlighted the
widespread impact of allergies on individuals exposed to
immunotoxic substances. PFCs can target immune cells and
interfere with the production of cytokines, which are signaling
molecules involved in immune responses. This interference can
affect pro-inflammatory and anti-inflammatory cytokines,
leading to dysregulation of the immune system's balance and
potentially contributing to allergic reactions.*

3.3.5. Reproductive toxicity. Teratological effects of PFOS
(potassium and lithium salts) on rats, rabbits, and mice were
also investigated earlier in laboratory studies.?"* These studies
observed developmental disorders, including decreased fetal
weight, cardiac defects (ventricular septal damage and right
atrium enlargement), anasarca (edema), and delayed bone
ossification (sternebrae and phalanges). The highest treatment
levels of PFOS resulted in structural abnormalities, reduced
weight gain, and decreased food intake in pregnant women. It is
worth noting that these birth disorders cannot be solely
attributed to maternal malnutrition.*> Comparisons between
mice and rats revealed increased abnormalities in mice,
although the reduction in maternal weight gain was less
pronounced. Additionally, changes in parental and embryonic
thyroid hormone levels were reported, indicating the potential
reproductive toxicity of PFOS.*>

The mechanism behind PFOS-induced neonatal death is
currently unknown. However, PFOS targets organ systems that
develop during the later stages of pregnancy, which aligns with
previous research and teratological outcomes.*® Additionally,
PFOS-mediated organ failure contradicts postnatal survival,
suggesting that lung development and pulmonary function may
be a significant point of impact.** Instances of neonatal
mortality linked to PFOS exposure share similarities to the
effects of nitrofen, an herbicide known for interfering with fetal
lung growth, leading to compromised cardiopulmonary func-
tion and increased neonatal rat mortality.*® The research
studies indicate observable changes in lung structure and size
in PFOS-exposed newborns, resulting in hindered development
of the lungs during the perinatal period.

As presented in Fig. 3(a), PFAS exposure has been associated
with multiple adverse effects on the male reproductive system.
Research has shown that PFAS compounds can interfere with
hormone regulation, leading to disruptions in testosterone
levels and sperm quality. An imbalance in hormone levels can
lead to problems like lower sperm count, reduced sperm
movement, and changes in sperm shape. Additionally, PFAS
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exposure has been related to testicular damage and dysfunc-
tion, including testicular atrophy and impaired spermatogen-
esis. These effects can ultimately lead to fertility problems and
reproductive disorders in males. PFAS exposure can also impact
the female reproductive system in several ways, as presented in
Fig. 3(b). Similar to males, PFAS can disrupt hormone regula-
tion in females, affecting estrogen and progesterone levels. This
hormonal imbalance can lead to menstrual irregularities,
reduced fertility, and difficulties in conceiving. Compared to
long-chain PFAS, short-chain alternatives like show weaker
binding to hormone receptors and reduced transplacental
transfer; however, some studies still report endocrine disrup-
tion and fetal development concerns at elevated doses.®
Furthermore, prenatal exposure to PFAS has been correlated
with reduced birth weight and elevated preeclampsia risk.
Studies have also suggested a potential connection between
PFAS exposure and an increased incidence of gynecological
conditions like endometriosis and ovarian cysts.*’

3.3.6. Lipid metabolism disturbances. PFOS has been
noted to interfere with lipid metabolism in rodents and
humans, mainly due to its structural resemblance to fatty
acids.® Research on mice revealed that PFOS treatment disrupts
the homeostasis of lipid metabolism, resulting in reduced liver
glycogen storage and elevated serum glucose levels. Further-
more, PFOS has been shown to affect lipid balance, particularly
the secretion and normal function of low-density lipoproteins.®®
PFOS primarily targets the liver, essential for detoxification and
lipid metabolism, making it a significant site for PFOS action.
Additionally, the liver serves as a bioaccumulation site for
various pollutants.®?” PFOS has been found to impact the activity
of hepatic genes associated with fatty acid processes, hormone
regulation, and cholesterol metabolism.*® Studies also suggest
a relationship between gene expression related to cholesterol
metabolism and exposure to PFOA or PFOS, potentially
contributing to conditions like hypercholesterolemia and other
health disorders.”* The human biomonitoring studies have
revealed that exposure to long-chain PFAS such as L-PFOS,
PFOA, and PFDA is significantly associated with alterations in
lipid metabolism, as well as increased levels of apolipoproteins
(ApoB, ApoAl), fatty acids, and phospholipids. In contrast,
PFHXS, a short-chain PFAS, did not show significant associa-
tions with cholesterol sub fractions, highlighting differential
biological effects between PFAS types. These findings under-
score the need for further human-focused investigations on
how specific PFAS subclasses interact with lipid regulatory
pathways and contribute to cardiometabolic risk, particularly
given the growing prevalence of short-chain PFAS in the
environment.”?

3.3.7. Endocrine disruptive effects. The chemical structure
of PFOS suggests that its interactions with serum proteins,
especially the sulfonic acid group or the hydrophobic alkyl
chain, maybe the underlying mechanism. PFOS targets specific
serum proteins involved in vital endocrine and immunological
functions, crucial for maintaining a healthy hormonal
balance.”® Exposure to PFCs has been shown to produce estro-
genic effects in cell cultures using the ‘E-screen assay’.”
However, it's important to note that not all PFCs provoke the

© 2025 The Author(s). Published by the Royal Society of Chemistry
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same response. For instance, fluorotelomer alcohols like 6: 2
FTOH and 8:2 FTOH have been found to stimulate breast
cancer cell growth and enhance the estrogen receptor. In
contrast, PFOS, PFOA, and PFNA don't exhibit similar effects.®
Despite the variable effects of PFCs, they are recognized as
potential disruptors of the endocrine system in adult rats,
leading to altered hormonal function characterized by sup-
pressed testosterone levels and elevated estradiol levels.*®
Exposure to PFOA has been found to disrupt hormonal
balance in rodents, resulting in Leydig cell hyperplasia and the
formation of Leydig cell adenomas.”” Studies on adult rats
treated with greater than 5 mg perfluorododecanoic acid (PFDA)
per kg body weight daily for two weeks have observed testicular
damage, along with changes in gene expression, particularly the
suppression of genes responsible for cholesterol transport and
steroidogenesis, as well as a decrease in serum testosterone
levels.”®* These alterations are concerning, as Leydig cell

© 2025 The Author(s). Published by the Royal Society of Chemistry

(b) reproductive system.

hyperplasia is commonly observed in impotent men with lower
testosterone levels compared to normal individuals.” Improper
testicular function is associated with testicular dysgenesis
syndrome (TDS).* It is believed that TDS is caused by exposure
to endocrine disruptors during fetal development, which can
affect testis formation and lead to impaired testicular function
in adulthood, including reduced semen quality.

Research conducted on rats during crucial developmental
periods has revealed testis dysgenesis marked by Leydig cell
hyperplasia and Leydig cell aggregation in the testis center. This
condition leads to decreased testosterone levels and reduced
fertility in adulthood.'*>**> The impaired function of Leydig cells
results in the reduced expression of genes responsible for
steroidogenesis.

3.3.8. Interactions and dynamics in mammals and
humans. Earlier studies have underscored the presence of
binding sites for PFOS in mammals, acting as a protective
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mechanism against its harmful effects.'®*'* However, when the
saturation level of these binding sites is surpassed, organisms
exposed to high concentrations of free PFOS encounter toxic
effects. Fig. 4 illustrates the potential uptake, accumulation, and
toxicity of PFAS exposure in the human body. Mammalian studies
have elucidated a clear concentration-effect relationship con-
cerning the saturation of this binding pool. As long as the overall
chemical burden within the organism remains within manage-
able limits, PFOS exposure is tolerated. It is evident that an
escalation in the dosage results in a heightened mortality rate.””

Numerous investigations have delved into PFOS's capacity to
bind with serum proteins, studying how it displaces steroid
hormones from specific binding proteins in birds' and fish's
serum. PFOS is constrained to displace estrogen or testosterone
from carp serum steroid-binding proteins. However, it disrupts
cortisone in avian sera at relatively low PFOS concentrations.
Additionally, the disruption of corticosterone increases with the
chain's length, with sulfonic acids being more effective than
carboxylic acids.” The earlier research, which was focused on
assessing the endocrine-disrupting potential of pollutants,
mainly through non-receptor-mediated pathways, confirmed
the interaction of contaminants with serum steroid-binding
proteins as a potential mechanism. Previous research indi-
cates that environmental pollutants like bisphenol A (BPA) and
nonylphenol have limited efficacy in displacing human sex
hormone-binding globulin (SHBG) ligands from SHBG to E2.
Moreover, these contaminants have been found to increase the
proportion of SHBG-unbound estradiol at 10 to 100 mM
concentrations.'**'%°

1952 | Environ. Sci.. Adv,, 2025, 4, 1939-1962

Earlier investigations have indicated that humans exhibit an
extended half-life for the serum removal of PFOS, PFHS, and
PFOA.'"* Species-specific differences in pharmacokinetics may
be attributed to saturable renal resorption mechanisms. The
average duration of serum elimination was around 5.4 years and
4.8 years for PFOS, 8.5 years and 7.3 years for PFHS, and 3.8
years and 3.5 years for PFOA."® The extended half-life in
humans for removing these substances might be due to differ-
ences in how they are excreted through bile and absorbed in the
gut, possibly influenced by enterohepatic circulation.'** Table 3
presents various human health effects of PFAS with detailed
experimental insights.

4. Emerging regulation measures

Regulation measures for PFAS contamination typically involve
a combination of prevention and remediation strategies. These
include bans, restrictions, discharge limits, and drinking water
standards at national and international levels. Fig. 5 represents
the contamination pathways of short-chain PFASs, their impacts,
and associated regulatory frameworks in drinking water systems.

4.1. European union regulations

Preventing the environmental release of PFAS necessitates
implementing stringent measures and regulatory frameworks.
Certain key PFAS producers have initiated a withdrawal from
the market to reduce emissions. The 3M corporation undertook
one such initiative, which was recognized as a pioneer of PFOA.
They publicly declared on December 20, 2022, that they were

© 2025 The Author(s). Published by the Royal Society of Chemistry
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committed to discontinuing the production of PFAS by the
conclusion of 2025."*

The European Union (EU) has taken significant steps to
address PFAS through various policy instruments. The EU
Registration, Evaluation, Authorization, and Restriction of
Chemicals (EU REACH) proposed restrictions on PFAS on
February 7, 2023."* These restrictions were targeted at the
manufacturing, usage, and trade of these ECs. After that, PFAS
substances have been banned unless their concentration is
below 25 ppb for C9-C14 PFCAs and their salts or 260 ppb for
C9-C14 PFCA-related substances.

Under REACH, PFAS substances are increasingly being
classified as Substances of Very High Concern (SVHC), and
restrictions have been proposed on their manufacture, use, and
trade. This list has seen the addition of some short-chain
groups of PFAS, which consist of substances like 2,3,3,3-
tetrafluoro-2-(heptafluoropropoxy) propionic acid and their
salts, acyl halides, PFBS, and PFHpA and their salts. In May
2020, Denmark prohibited the application of PFAS in food
contact materials (FCMs). This law has been in effect and stip-
ulates that paper and cardboard FCMs cannot be sold. Such
targeted national bans have corresponded with measurable
reductions in PFAS concentrations in sewage sludge, surface
waters, and wildlife. However, it does allow for exceptions
regarding PFAS use in FCMs if these products incorporate
a functional barrier effectively preventing food contamination
through PFAS."**

On February 20, 2025, the French Parliament passed pio-
neering legislation to phase out PFAS, targeting their wide-
spread use and environmental persistence. The law bans PFAS

© 2025 The Author(s). Published by the Royal Society of Chemistry

in cosmetics, textiles, ski wax, and footwear by 2026, extending
to all textiles by 2030, with exemptions for protective gear. It
mandates PFAS monitoring in drinking water and introduces

e “polluter pays” principle to hold polluting companies
financially accountable. This legislation, following Denmark's
example, positions France as a leader in PFAS regulation and
may influence broader EU policy, advancing a unified frame-
work for managing these hazardous substances across member
states."** Additionally, under the EU POPs Regulation, PFOS and
PFOA compounds are strictly limited to trace amounts (0.001%
by weight for PFOS and 0.0000025% by weight for PFOA), with
exemptions allowed only for laboratory research or uninten-
tional contamination.***

Within the EU, the principal legal framework overseeing
water quality and access for human use is the Drinking Water
Directive. This directive categorizes PFOS and related
compounds as priority substances under water policy. A recent
update in 2020 introduced new criteria, setting the ‘PFAS Total’
threshold at 0.5 pg L™ " and a maximum of 0.1 pg L™ " for the
‘Sum of PFAS’ in drinking water."¢

4.2. United states regulations

The United States Environmental Protection Agency (US EPA)
has taken a proactive approach through a series of regulatory
frameworks, including the PFAS Strategic Roadmap, the Clean
Water Act (CWA), and the Safe Drinking Water Act (SDWA).

In October 2021, the US-EPA unveiled its PFAS Strategic
Roadmap. The title for this was EPA's Commitments to Action
2021-2024, and it details a comprehensive strategy comprising
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31 specific initiatives falling under the EPA's regulatory
purview."” These initiatives are structured to be implemented
over varying timeframes, encompassing discrete and ongoing
projects. Key unresolved action points include:

On April 10, 2024, the U.S. EPA finalized drinking water
standards for six PFAS under the National Primary Drinking
Water Regulation (NPDWR). The rule sets legally enforceable
Maximum Contaminant Levels (MCLs) at 4 ppt for PFOA and
PFOS, and 10 ppt for PFNA, PFHxS, and HFPO-DA (GenX). It has
also led to increased investment in PFAS treatment technologies
and voluntary phase-outs. A Hazard Index approach is also
adopted to address combined exposure from PFAS mixtures.'*®'*®

In December 2022, the EPA issued guidance under the
National Pollutant Discharge Elimination System (NPDES)
framework permitting system for state-level agencies to limit
PFAS discharges into water bodies from industrial sources. In
August 2022, the EPA proposed designating PFOA and PFOS as
hazardous substances under the Comprehensive Environ-
mental Response, Compensation, and Liability Act (CERCLA),
signaling significant consequences for environmental cleanup
initiatives and legal responsibilities regarding liability.

In 2024, the U.S. EPA finalized PFAS reporting and record-
keeping requirements under Toxic Substances Control Act
(TSCA) Section 8(a)(7). Entities that have manufactured or
imported PFAS or PFAS-containing products since January 1,
2011, must report detailed data on usage, volumes, disposal,
exposures, and hazards. However, due to resource constraints,
the EPA delayed implementation, with the reporting portal now
scheduled to open in July 2025 and close in January 2026.'*

4.3. Other global regulations

4.3.1. Australia. The Intergovernmental Agreement on
a National Framework for Addressing PFAS Contamination,
a collaborative effort of the Australian federal, state, and terri-
torial governments, was established in 2018. This agreement
aimed to create an associational position statement that reflects
the collective viewpoint of Australian governments, emphasizing
the need for prudent restrictions on PFAS use to the greatest
extent possible. Furthermore, it outlined objectives for prevent-
ing the application of PFAS within the Australian context."

4.3.2. New Zealand. On December 21, 2022, the Environ-
mental Protection Authority of New Zealand issued fresh regu-
lations regarding Aqueous Film-Forming Foam (AFFF). These
regulations, which occurred on January 1, 2023, explicitly
prohibit using PFAS-containing firefighting foams. This prohi-
bition applies specifically to AFFF formulations that incorporate
compounds related to PFOA."*

4.3.3. Asia. China, Japan, and South Korea are taking
decisive steps to regulate and oversee the utilization of PFAS,
primarily focusing on compounds such as PFOS, PFOA, and
perfluorohexane sulfonate (PFHXS). Across Asia-Pacific, regula-
tory actions on PFAS are intensifying. On June 30, 2025, Japan
amended its food safety standards to include limits on PFOS
and PFOA in mineral water, enhancing consumer protection.
Taiwan's Ministry of Environment, on May 13, 2025, updated its
toxic chemical substance regulations by adding PFOS and PFOA
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salts to the controlled list. In Australia, the Water Services
Association (WSAA) emphasized the need to address PFAS at the
source, presenting key strategies to a Senate Select Committee
on January 23, 2025 (ref. 122 and 123). In March 2023, China
increased its dedication by including two long-chain PFAS in its
updated List of New Pollutants for Priority Management. This
inclusion is aimed at meticulous regulation and restriction of
their production, usage, importation, and exportation. In
October 2022, Japan and its neighboring country, South Korea,
introduced fresh trade requirements specifically to PFOA,
reinforcing their commitment to PFAS management.'*
Learning from this, even though the Bureau of Indian Stan-
dards (BIS) adopted the International Standards Organizations
criterion for sampling and testing of PFOA and PFOS in 2020,
more urgent action is required to address the uncontrolled use
of toxic chemicals like phthalates and PFAS in consumer
products used by adults and children, such as single-use plas-
tics, processed food, packaging, and personal care and
cosmetics. These products are the main sources of contact with
serious negative effects on the environment and human health.
The lack of data on the manufacturing, distribution, and usage
of PFAS drive the urgent need for high-quality toxicological and
epidemiologic studies in Indian scenario to quantify, evaluate,
and assess the effects and mechanisms of these chemicals
implicated in the development of early-onset chronic diseases,
particularly health concerns related to women and children.

4.4. Policy development directions and recommendations

While PFAS regulations are gaining momentum globally,
further progress requires coordinated, forward-looking policies.
(i) The adoption of unified health-based guideline values for
various PFAS beyond PFOA and PFOS is crucial to harmonize
protection standards across regions. (ii) Precautionary regula-
tion of PFAS as a chemical class, rather than individual
compounds, can address the issue of regrettable substitution,
as seen with GenX and ADONA. (iii) Integrating source control
with polluter-pays mechanisms would strengthen environ-
mental accountability, as exemplified by recent French legisla-
tion. (iv) Policies should incentivize development and
certification of PFAS-free alternatives and safe disposal tech-
nologies. (v) Real-time PFAS occurrence and compliance
monitoring systems must be embedded within policies to allow
data-driven refinement of regulations. In addition, interna-
tional coordination, possibly under platforms like the OECD or
Stockholm Convention, could streamline efforts for sustainable
PFAS management.

5. Conclusions

The review addresses the concerns surrounding PFAS and their
alternatives, which are synthetic chemicals widely used in
various consumer products. These substances exhibit persis-
tence in the environment and accumulate in the bodies of
animals and humans, posing potential health risks. Prolonged
exposure to elevated levels of PFAS can result in adverse effects
on organs, tissues, and cells, including developmental and

© 2025 The Author(s). Published by the Royal Society of Chemistry
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reproductive toxicity, immune system dysfunction, and an
increased susceptibility to cancer. It is acknowledged that the
accumulation of PFOS in the liver and serum disrupts normal
liver function and may lead to liver damage. The ability of PFOS
to interact with serum proteins has been the subject of
numerous studies, which have examined how it removes steroid
hormones from particular binding proteins in the serum of fish
and birds. The ability of PFOS to remove testosterone or
estrogen from carp serum steroid-binding proteins is limited.
Even at relatively low PFOS concentrations, it does, however,
interfere with cortisone in avian sera. Furthermore, the length
of the chain increases the disruption of corticosterone, with
sulfonic acids being more efficient than carboxylic acids. The
interaction of pollutants with serum steroid-binding proteins
was verified as a viable mechanism by earlier research, which
evaluated the endocrine-disrupting potential of pollutants,
mainly through nonreceptor-mediated pathways.

Although some of these health effects are well-documented,
many studies have yet to establish the connection between PFAS
accumulation and damage to various organs, underscoring the
need for ongoing research to gain a more comprehensive
understanding of potential risks. Through this extensive anal-
ysis, the review intends to contribute to a more profound
knowledge of the health impacts of short-chain PFAS and
provide insights for global regulatory strategies to address their
risks effectively. Notably, even within EU member countries and
across U.S. states, various agencies have independently enacted
distinct policies before adopting more comprehensive union or
federal directives.
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EU European union registration, evaluation,
REACH  authorization, and restriction of chemicals
FEP Fluorinated ethylene propylene

HFPO Hexafluoropropylene oxide

HFPO-DA Hexafluoropropylene oxide dimer acid
MCLs Maximum contaminant levels

NPDES  National pollutant discharge elimination system
PFAS Per- and polyfluoroalkyl substances

PFA Perfluoroalkoxy alkanes

PFCs Perfluoroalkylated compounds

PFBS Perfluorobutane sulfonic acid

PFBS Perfluorobutanesulfonate

PFDA Perfluorododecanoic acid

PFHpA  Perfluoroheptanoic acid

PFHXS Perfluorohexane sulfonate

PFDA Perfluoro-n-decanoic acid

PFNA Perfluorononanoic acid

PFOS Perfluorooctane sulfonic acid

POSF Perfluorooctanesulfonyl fluoride

PFOA Perfluorooctanoic acid

PFPE's Perfluoropolyether

PFTrDA  Perfluorotridecanoic acid

PPARa Peroxisome proliferator-activated receptor alpha
POPs Persistent organic pollutants

PTFE Polytetrafluoroethylene

PVDF Polyvinylidene fluoride

ROS Reactive oxygen species

SHBG Sex hormone-binding globulin

SVHC The substance of very high concern

TDS Testicular dysgenesis syndrome
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