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The research into adamantane-type compounds has gained momentum in recent years, yielding
remarkable new applications for this class of materials. In particular, organic adamantane derivatives
(AdR4) or inorganic adamantane-type compounds of the general formula [(RT)4Eg] (R: organic
substituent; T: group 14 atom C, Si, Ge, Sn; E: chalcogenide atom S, Se, Te, or CH,) were shown to
exhibit strong nonlinear optical (NLO) properties, either second-harmonic generation (SHG) or an
unprecedented type of highly-directed white-light generation (WLG) — depending on their respective
crystalline or amorphous nature. The (missing) crystallinity, as well as the maximum wavelengths of the
optical transitions, are controlled by the clusters’ elemental composition and by the nature of the
organic groups R. Very recently, it has been additionally shown that cluster cores with increased
inhomogeneity, like the one in compounds [RSI{CH,Sn(E)R'}s], not only affect the chemical properties,
such as increased robustness and reversible melting behaviour, but that such ‘cluster glasses’ form
a conceptually new basis for their use in light conversion devices. These findings are likely only the tip of
the iceberg, as beside elemental combinations including group 14 and group 16 elements, many more
adamantane-type clusters (on the one hand) and related architectures representing extensions of
adamantane-type clusters (on the other hand) are known, but have not yet been addressed in terms of
their opto-electronic properties. In this review, we therefore present a survey of all known classes of
adanmantane-type compounds and their respective synthetic access as well as their optical properties, if
reported.
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electron count allows for a corresponding electronic structure of
the material. The most well-known examples are 1:1 combi-

1. Introduction

Diamond, in its cubic modification, is the hardest solid on
Earth, which is due to the unique structure and bonding with
four strong bonds directing in a perfectly tetrahedral manner to
four neighbors in a three-dimensional network of face-centered
cubic (F3m) symmetry.® It is therefore reasonable that the
heavier congeners, Si, Ge, and a-Sn also adopt this structure.
However, not only those, but also isoelectronic binary or mul-
tinary solids follow this structural concept, as the same overall
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nations of atoms of groups 13 and 15 or 12 and 16 such as GaAs
or ZnS, but more complex compositions, like CuFeS,, can also
be derived from the cubic diamond network by replacement of
the atomic sites in a tetragonal superstructure. Moreover, there
are also “filled” versions, like the Zintl phase NaTl with two
intertwining diamond networks of covalently bonded Tl atoms
and non-bonding Na' cations, or crystobalite-type SiO, with O
atoms bridging between the Si atoms that are arranged in
a diamond-type pattern. Naturally, the chemical and physical
properties of the materials vary as a consequence of the
different elemental combinations and corresponding changes
in bond strengths and electronic structures. This is extensively
taken advantage of in technical applications - starting with the
electrical insulator and heat conductor diamond, via all kinds of
semiconductor applications of the heavier homologues and the
binary analogs, to more specific applications of the more
complex compounds.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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However, the structure and bonding concept of diamond,
which is overwhelmingly successful in solid state compounds,
is not restricted to the three-dimensional extension. On the
contrary, molecular fragments of these structures are even
more diverse. The parent structural fragment of diamond is
adamantane (derived from the greek adamas for diamond).
The adamantane-type topology (or adamantane-type scaffold)
is based on a core structure with ten atoms, four of which
represent the bridgehead atoms, and six of which occupy the
briding positions. It has a sum formula of C;,H;c (or
(CH)4(CH,)6) and was first proposed in 1924 by Decker, who
investigated the compound under the name “decaterpene,”
which would later be recognized as adamantane.> However,
due to its exceedingly low natural abundance (0.0004%),* it
took another decade until adamantane was identified in crude
oil in Hodonin, Czechoslovakia in 1933. The adamantane-type
scaffold, just like its parent solid state structures, is found in
a multitude of compounds scattered throughout the periodic
table. Innumerous admantane derivatives have been realized -
either by replacing H with other atoms or molecules, or by
isoelectronic replacement of some or all of the C atoms or CH,
units - like in the related solids with diamond-type structures.
A very prominent derivative of the admantane molecule is
urotropine, N,(CH,)s, a condensation product of ammonia
and formaldehyde, in which the C-H bridgehead units are
replaced with isoelectronic N atoms. There are also purely
inorganic analogs. One of the first purely inorganic
adamantane-type molecules, and maybe the most prominent
example, is phosphorous pentaoxide that consists of binary
molecules of P40, the structure of which was suggested in
the late 19th century.* Inorganic cluster cores of the type
{Q4E¢} are obtained when replacing the bridgehead C atoms
(position Q) with atoms of another group 14 element and the
CH, groups (position E) with atoms of a group 16 element.
Saturation of the bridgehead atoms requires a substituent to
form either binary anions [Q4E0]*~ (Q = Si, Ge, Sn) or hybrid
clusters of the type [(RQ),Eq], with Q = group 14 element Si,
Ge, or Sn and R = organic or organometallic group
substituent.

While the first observation of these molecules was unin-
tended and caused excitement for the beautiful structure, the
development is now in the direction of the compounds’
intriguing chemical and physical properties. With regard to the
effects of the substitution of elements on these features, the
same rules apply to molecules as to solids, which enables fine-
tuning across a broad spectrum. To make use of these proper-
ties, however, it is necessary to know all about the synthetic
approaches and their respective modifications, and develop
them further. In this review, we therefore aim at giving
a comprehensive overview of the various synthesis pathways of
compounds with a molecular adamantane-type structure across
the periodic table, and discuss methods for the functionaliza-
tion of the organic adamantane. To keep in scope, we have
decided to limit the organic synthesis to tetrasubstituted ada-
mantanes. Based on this, we will further elaborate on the
optical (nonlinear) properties and structural features of the
different compounds in the solid state.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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2. Variety of compositions and
syntheses
2.1 Inorganic and hybrid compounds

Inorganic and hybrid compounds featuring adamantane-type
architectures are formed with elements from nearly all groups
across the periodic table. In this section, we will discuss their
synthetic access and elaborate on prevalent methods for the
formation of molecules with specific elemental combinations.
This will be discussed for each combination of groups from the
periodic table using the Q/E nomenclature introduced above,
with Q representing the atom(s) featuring three bonds within
the adamantane-type structure, and E representing the atoms or
groups bridging between two of the former positions. Some
methods are commonly used for all elements and will be briefly
discussed first with one example given for each; for easier
tracking, a letter will be assigned to those procedures, to be
referred to later in the course of this article.

Method A. One common synthesis method is a solid-state
reaction starting directly from the elements or from binary
salts. It is a simple way to realize uncomplicated adamantane
molecules, but it also requires high temperatures, which
prohibits the use of some precursors (Scheme 1, top left).

Example:***

SiS, + Na,S Nay[SiyS10](487)
800 °C,48 h

Method B. Similar to Method A, solvothermal reactions are
commonly used to generate adamantane-like structures. In
those reactions, a solvent, elements or binary precursors (as well
as some additives, if applicable) are reacted in a closed vessel at
elevated temperatures. Compared to Method A, these often-
times use lower temperatures, and milder conditions allow for
the use of more diverse precursors (Scheme 1, top left).

Example:*

BeCl, + Be% [(BeNH;),(NH, )] Cl(113)

Method C. As in A or B, simple salts or elements are reacted,
but this time, the reaction takes place in solution at tempera-
tures below their respective boiling points in open vessels. The
very mild conditions allow for the addition of additives or

elements Method A. B, € Method LI /R based
or salts solid state thermolysis molecule
solvothermal chemolysis
1n solution
Method D R Method J E/Q/R-based
RQA; +EB) —
-AB . . rearrangement molecule
EF /7 E
B | € | —
R R~R
Method E / / Method K ]
metal alloy —— E// —~E I simple precursors
extraction multidentate ligands
Method F. G Method L. M. N
gaseous L simple precursors
precursor(s) solid state sonication

in solution mechanochemustry,

electrochenustry:

Scheme1 Simplified representation of the synthetic Methods A—N for
the formation of adamantane-type clusters.
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catalysts and for more thermally unstable adamantanes to be
realized (Scheme 1, top left).
Example:*>

SiS, + Na,S WN34[Si4S10](487)

Method D. If the precursor used for the Q component contains
three leaving groups and those for E contain two, a condensation
reaction can yield adamantane compounds with each bond of the
scaffold formally formed by one condensation event. This mostly
occurs for metal (pseudo)halides reacted with alkaline metal salts
of E anions, H,E, or silyl derivatives of E. Such syntheses are nor-
mally carried out in solution at mild temperatures. The formation
of the condensation side product can be the driving force in the
reaction (Scheme 1, left upper center).

Example:***

Me,CO,H,0

PhSnCl; + Na,S [(PhSn),S6] (586)

Method E. Some purely inorganic molecules can be obtained
by first creating a solid phase—by melting the corresponding
elements or binary salts—and subsequently extracting this phase
with an appropriate solvent. This sometimes takes place in the
presence of a sequestering agent, like a crown ether or a cryptand,
or other additives. Common solvents for this method are ethane-
1,2-diamine or THF (Scheme 1, left lower center).

Example:**>

1.Heat to melt

LiSez + Ge + Se [Ll4(Hzo)16] [Ge4Sem] (498)

H»

Method F. Gaseous reactants like H,S, H,, O, or PH; can be
introduced to solid reaction partners at high temperatures to
occupy the E position during construction of the adamantane
scaffold (Scheme 1, bottom left).

Example:***

MeSiCl; + H,S [(MeSi),Ss] (565)

200°C,12 h

Method G. Similar to F, but in the liquid phase, hence these
reactions often do not require high temperatures (Scheme 1,
bottom left).

Example:"®7°

MCNHZ + PC13

—78 °C to RT 4 days

[P4(NMe),] (131)

Method H. Thermal decomposition of a precursor can lead
to the formation of simple adamantanes, sometimes in the
presence of a catalyst or additive (Scheme 1, top right).

Example:*>*

Me;Si(AsSiMes), [As4(SiMe),] (110)

240°C48 h

Method I. Chemically induced decomposition by hydrolysis
or acidic decomposition of a precursor can afford adamantane-

9440 | Chem. Sci., 2024, 15, 9438-9509
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type clusters, especially for oxide and hydroxide species. From
a mechanistic viewpoint, this is often similar to Method D, but
may happen unintentionally under ambient conditions
(Scheme 1, top right).

Example:"'®

K,Ss + TaCls + 18-crown-6 4+ H,0 — 2"

RT,20h

[K-18-crown-6],(TaCls),04(174)

Method J. In some cases, rearrangement of molecules or
other cluster architectures to the adamantane-type scaffold
induced by heat, catalysts, or other reactants were reported
(Scheme 1, right upper center).

Example:*®

THF ,pentane
_—

DMPyr;[Me;In(SInMes)], DMPyr, [S4(InMe; )] (25)

RT,14 days

Method K. Multidentate organic ligands, mostly with oxygen
or nitrogen sites, or preformed cluster fragments can be used as
templates to fill the E position in adamantane-type compounds
(Scheme 1, right lower center).

Example:*

Method O
[counterion'][(RQ)4Eg] ————— [counterion?][(RQ)4Eg]

R R’

(|3 _R’ [
E-7"E €
el N

REKESTR rflefr
R /
R
Method P Method Q
ligand addition | R modification
i
E—~E
| € |
R/Q-é\E//Q\R
E// ~E
R
Method R | Method S
exchange redox reaction
q

R R

| [
E//Q\E E//Q\E
| € | | € |

R/Q‘|\E//Q\R R/Q\l‘E//Q\R
E=/ T E E7/E
R R

Scheme 2 Simplified representation of the synthetic Methods O-S for
the formation of adamantane-type clusters by modification of an
adamantane-type cluster compound.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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(2, 6-dimethoxyphenyl)K + Cal, RTi> [

T,3 days

x (n4-0)Cay((2, 6-dimethoxyphenyl))y] (27)

Method L. Reactions towards adamantane-type clusters can
be induced by sonication (Scheme 1, bottom right).
Example:*

AgOTf + Ga Toluene,sonication

45°C,14 days

[Ga(CsHsMe),|,[{AgGa(OTf), },Gas(OTf), ] (26)

Method M. Mechanochemical reactions can prompt iso-
merisation to the desired adamantane-type molecules (Scheme
1, bottom right).

Example:*®
[P4(N'Bu)¢] (DD-isomer) + LiCl

RT,1.5 h,ball milling

[P4(N'Bu)g] (138)

Method N. Electrochemical methods can form adamantane-
type clusters from appropriate electrodes and electrolytes
(Scheme 1, bottom right).

Example:***

CuCl, + SC(NH,)NHCH,CH = CH, + HCI ESZ'VCO 1'3tA“

[(CuCl,){SC(NH,)NHCH,CH = CH,}| (286)

Method O. For ionic clusters, new compounds can be
generated by exchanging the counter ion to introduce new
functionalities or templating counter ions (Scheme 2, top).

Example:**?

[Me4N],[GesSio] + [Ni(Phen)B]Cb%)

[Ni(phen),] ,[GesS1)(550)

Method P. In a few cases, ligands can be added to an existing
adamantane core in a position that did not previously form
bonds outside the cluster scaffold (Scheme 2, top left).

Example:**>34

P,O¢ + S —ac [(SP),O5](631)

160 °

Method Q. Clusters with (organic) ligands can be expanded
by modification of the ligand, by formal ligand exchange, or by
ligand abstraction to afford new compounds (Scheme 2, top
right).

Example:**?

THF PhMe
RT.12h

[14-O{ (thf)Cl,Zr} ,(OMe),] + AlMe;

[14-O(AIMe){(thf)CL,Zr},(OMe),] (894)

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Method R. Reactions of adamantane-type or other clusters to
replace atoms in their inorganic core, sometimes combined
with a rearrangement of the architecture to the adamantane
scaffold. This includes exchange reactions in Q and E positions
between adamantanes. This method can also be used to create
larger clusters with ternary inorganic cores of other architec-
tures, especially when an anion source is additionally provided
(Scheme 2, bottom left).

Example:***

[{Mny(bpea)},06]| Bry + Na[BF,] %
(M (bpea)} O] [BF.,(188)

Method S. Chemical reduction or oxidation of an
adamantane-type cluster can, in some cases, be done under
retainment of its structural motif (Scheme 2, bottom right).

Example:"**

TACNMe + [{Mn(bpea)}, O] [BHa]; —

RT,5 min

[{Mn(bpea)}, O] [BH.],(196)

Method T. A method for the generation of extended struc-
tures is the linkage of inorganic adamantane-type clusters using
transition metal compounds or other linkers in solution.
Sometimes, this is combined with an ion exchange and some
additives (Scheme 3).

Example:***
[P4(NMe),] + Cul 1% [{P4(NMe), }Cul] (936)

Method U. There are a couple of unique approaches, which
are not outlined in this overview.

In the following, we will dicuss all different families of
adamantane-type compounds in groups sorted by their
elemental combination. This will be done in order of the group
of the atoms in the E position, starting with hydride clusters
and moving along to halide species. The only main groups that
do not occur in the E position are groups 2 and 18.

Being rather uncommon, examples with transition metal
atoms in the Q positions will be discussed last. In some of the
final subsection, we will give an overview of clusters comprising
elements from different groups in their scaffold, as well as
extended and polymeric species.

All cluster examples, along with their simplified synthesis/
reaction methods, are given in tables at the end of each

E L. E
k"7ﬁ NA N
E—A—E Miethod T e ~ N
| € | —= . ECQ KE E E \E E/ \
/Q~|\E//Q B, £ \QXQ/E
E/Q\E E LLL J"J\E/ U,

Scheme 3 Simplified representation of the synthetic Method T to
generate a polymeric compound from adamantane-type clusters.

Chem. Sci., 2024, 15, 9438-9509 | 9441
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Table 1 Adamantane-type compounds with hydrogen or group 1 atoms in the E position®

Compound Reagents/conditions Method
[(MgIDipp),(MgHMDS),Hg] (1) IDipp, [Mg{N(SiMe;),},], PhSiHz/hexane, 60 °C, 3 h ct
[(CaTACNMe),H¢][B(CeH;-3,5-Me,)] (2) H, (1 bar), [(Me;TACNMe)Ca(CH,Ph)(thf),][B(C¢H;-3,5-Me,)]/THF, 70 °C, 6 h G"
[AsPh,],[Re4(CO)1,Hg] (3) Re,(CO), 9, NaBH,, (CeH;),AsCl/THF, EtOH ch
[Me;BnN],[Re4(CO),,He] (4) Re,(CO);0, KOH, [Me;BnN]Cl/MeOH, 65 °C, prolonged heating H"
[(Cp*Zr),He] (5) [(w-H)(us-H)(Cp*ZrCl)]4, Na in Hg/Et,0, 1 month 7
[(ZnIDipp),(ZnHMDS),H,] (6) Zn(HMDS),, IDipp, DMAB/cyclohexane, RT, 30 min c?
[Ir4(IMe),(CO)H;,][BF4], (7) [Ir(cod)(IMe),][BF,], KOH, Na[Bar"]/glycerol, H,0, 120 °C, 24 h 7'
[Ir4(IMe),(CO)H;,][BAIF], (8) [Ir,(IMe);(CO)H,,][BF4], (7), Na[Bar"|/dichlormethane, 2 h o'
[Ir(IMe)gH,,0][BAI"], (9) [ir(cod)(IMe),] [BF,], KOH, NaBar"/glycerol, H,0, 120 °C, 24 h 77
[{Me,P(BH;)CHSiMe,OLi}4Li4(Et,0), 55(thf); 5] (10) 1. Me;P(BHj;), n-BuLi/THF, 2 h T8

2. (Me,Si0)/Et,0, 2 h

“IDipp =

1,3-bis(2,6-diisopropylphenyl)imidazole-2-ylidene, HMDS = 1,1,1,3,3,3-hexamethyldisilazide, TACNMe = 1,4,7-trimethyl-1,4,7-

triazacyclononane, Bn = benzyl, Cp* = pentamethylcyclopentadienyl, DMAP = dimethylamine borane, BAr* = [B[3,5-(CF5),C¢H3].

section (Tables 1-23); for the sake of readability, the respective
synthesis methods are not always referred to in the main text
though. If the reaction temperature is not specified in the table,
the reaction was carried out at ambient temperature. Similarly,
reactions without specified durations occur instantaneously.
Purification times and methods are not included for purifica-
tions that occur in additional, subsequent steps.

We will illustrate examples of molecular structures of all
cluster types that were obtained in single-crystalline form. For
crystallographic details, we refer to the original literature.

2.1.1 Q/H and Q/group 1 adamantane-type clusters. A
number of hydride clusters with (transition) metals have been
realized, which most often comprise a central metal tetrahe-
dron with direct metal-metal bonds. They are formally con-
structed by coordinating all edges of this central element by
hydrides. They can be seen as one point in a continuum of
related compounds featuring fewer hydrogen atoms or addi-
tional (bridging) ones, respectively. Although, those will not be
further discussed except for some examples.>® Apart from that,
there is one species with lithium coordinated by oxygen atoms.

Mg
c H <

e

N ¢

¢

1 6

An N-heterocyclic carbene can coordinate to [Mg(HMDS),]
(HMDS = 1,1,1,3,3,3-hexamethyldisilazide) and in turn be
reacted with PhSiHj;, resulting in the adamantane-type cluster
[(MgIDipp),(MgHMDS),Hs] (1, IDipp = 1,3-bis(2,6-
diisopropylphenyl)imidazole-2-ylidene, Fig. 1), where the
magnesium atoms carry either an IDipp or N(SiMej), ligand."* A
calcium congener [(CaTACNMe),H¢][B(CsH3-3,5-Me,)] (2,
TACNMe = 1,4,7-trimethyl-1,4,7-triazacyclononane) is obtained
from an in situ-formed complex [(TACNMe)Ca(CH,Ph)(thf),]
[B(CsH;-3,5-Me,)] after treatment with H, gas under elimination
of toluene, with all Ca atoms carrying the same tridentate
ligand.*

The first transition metal cluster anion in this group,
[{(CO);Re}sHe]*™ (in 3 and 4) was formed from [Re,(CO)iq],
either by reaction with Na[BH,]"* or by prolonged heating under
basic conditions in methanol as one of multiple products.*

The adamantane-type compound [(Cp*Zr),He¢] (5, Cp* =
pentamethylcyclopentadienyl) was found as the final piece in
a row of tetrahedral compounds with fewer hydrides by reduc-
tion of [(n-H)(ns-H)(Cp*ZrCl)], with Na amalgam.® This led to
a mixed-valence Zr''/Zr'™" situation in the cluster core.

Zr

T

10

Fig. 1 Examples of adamantane-type compounds with hydrogen or group 1 atoms in the E position: [(MgIDipp),(MgHMDS),Hgl (1, left (a)),
[(ZnIDipp),(ZNHMDS),Hg| (6, middle (b)) and [{Me,P(BH3)CHSiMe,OLi}4Lis(Et,O), 75(thf)1 2] (10, right (c)). Hydrogen atoms in the ligands are

omitted for clarity.
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An analog to the aforementioned [(MgIDipp),(MgHMDS),-
Hg] cluster was realized with zinc in [(ZnIDipp),(ZnHMDS),Hg]
(6, Fig. 1).** The synthesis strategy runs in parallel as well, with
Zn(HMDS), as the metal precursor and dimethylamine borane
as a hydride source.

A number of iridium hydride clusters (7-9) could be ob-
tained upon dehydrogenation reactions catalyzed by
[Ir(Ime),(cod)][BF,4] (cod = 1,5-cyclooctadiene) of glycerol.**"
This results in the formation of the hydride as well as CO
ligands at the metal center in some cases.

A {Li,O¢} adamantane-like core can be observed in the larger
complex [{Me,P(BH;)CHSiMe,OLi},Liy(Et,0), 75(thf); 55] (10,
Fig. 1). It is formed as the tetramer of the in situ generated linear
molecule Me,P(BH)CH(Li)Si(Me,)OLi coordinated by additional
solvent molecules.*®

2.1.2 Q/group 13 adamantane-type clusters. Adamantane-
type clusters with group 13 atoms in the E position are known
for groups 14 to 16, with a few unique examples in each group
and without a unifying synthetic route. Additionally, there is
also an example with a {Ag,Ga,,} adamantane-type scaffold. A
brief description of the formation conditions for all of them is
given in the following paragraphs.

Different approaches for the formation of the few known
carbon/group 13 adamantane-type compounds have been show-
cased in the literature. The boron congeners [(RC),(R'B)s] (11-13,
Fig. 2) can be synthesized at higher temperatures by pyrolysis of
BMe; or (Cl,B),CH,,"" or by a solid state reaction of HC(BEt;);
and BEt; in the presence of AlEt;.””> At room temperature, the
rearrangement of (BEt);(CMe), to [(CMe),(BEt)s] (14) was
observed, induced by elemental potassium and I,.*

A unique synthetic approach, featuring R,GaH and alkenes
HC=CR/, leads to the formation of carbagallane adamantane-
type structures [(R'C),(RGa)s] (15-17).>* It involves the inter-
mediate formation of dialkyl(alkenyl)gallium compounds,
which react with additional R,GaH to form the clusters under
elimination of GaR;.

Three dianionic group 15 congeners exist. An As/Ga
compound [Li(thf),],[(‘BuAs)4(GaCl,)s] (18, ‘Bu = tertiary butyl,
Fig. 2) is isolated by a simple condensation reaction of InCl; and
Li,As’Bu at low temperatures,® while the compounds Li,[(-
RN)4(AlH,)s] (19-20, R = Me, ‘Bu, Fig. 2) are formed by
condensation of Li[AlH,] and [RNH;]CL.>

The sulfur containing Na,[S,(BH,)s] (21, Fig. 2) adamantane-
type cluster is obtained by a stepwise condensation reaction of
THF-BH3, and Na[BH,] with H,S under elimination of H,.”” In
the reaction, an intermediate species (BH3)S(B,H;) is formed,
which reacts with additional H,S to give the final product. The
Se congener is formed via a different species with elemental Se
and Na[BH,]. This leads to Na,[H;BSe-SeBH;] which, under the
influence of elevated temperature and BHj;, reforms Na,[Se,(-
BH,)s] (22). Both the sulfur and selenium homologs undergo
a cation exchange to the Cs compounds (23-24) with CsBr. The
only other example of a group 16-based adamantane in this
category is DMPyr,[S,(Me,In)q] (25, Fig. 2), which is a decom-
position side product of the six membered ring DMPyr;[Me,-
In(SInMes)]s, which could not yet be synthesized in a pure
form.?®
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The single example featuring a transition metal [Ga(CsHs5-
Me),],[{AgGa(OTf);},Gag(OTf),] (26, OTf = O;SCF;, Fig. 2)
comprises bridging triflate ligands between the gallium atoms,
with the terminal gallium moieties connecting to three, and the
atoms in the E position to four, ligands.* It is formed by silver
triflate reacting with elemental gallium after ultrasonic
activation.

2.1.3 Q/group 14 adamantane-type clusters. An extensive
family of silaadamantanes obtained from exchanging some or
all carbon positions in organic adamantanes with silicon form
the largest group in this section. Targeted ligand substitution
has been extensively studied in their case. There are also two
publications of SisEs compounds with Ge and Sn in the E
position. In combination with P or As, neutral adamantanes of
the type [(E'®)4(E"*Ry)] form a small subset. But at first, we will
discuss clusters with metal atoms in the Q position, with an
example from group 2, 8 and 10.

2.1.3.1 Group 2/group 14 adamantane-type clusters. This
unique group 2/14 adamantane-type, [(1s-O)Cay(2,6-
dimethoxyphenyl)s] (27, Fig. 3), which is formed around
a central oxygen atom, uses the tridentate dimethoxyphenyl
group as a templating ligand.*® These ligands bridge the Ca sites
both by a carbon atom in the E position, as well as by coordi-
nation with their oxygen atoms. The origin of the central p,-O
atom could not be determined and might stem either from H,0O
or O, impurities during the inert gas protected reaction, or
decomposition of the solvent/ligand.

2.1.3.2 Group 8/14 adamantane-type clusters. In two studies,
Fe clusters have been characterized. In the cluster family
[(Fe)4(aryl)(thf),] (28-31), the carbon atoms of aryls are found in
the E position. These clusters are prepared by reacting Fe(acac);
(acac = acetylacetonate) with the aryl Grignard reagent (aryl)
MgBr.*

In the other study, reactions of Snl, and Fe(CO)s in ionic
liquids lead to Fe/Sn compounds. [BMIm],[{Fe(CO);}4Snelso]
(32, BMIm = 1-butyl-3-methyl-imidazolium) or [BMIm]4[S]
[{Fe(CO);}4Snelso], (33, Fig. 3) depending on the counterion in
the ionic liquid.** They each feature different Sn coordination
sites. In 32, three Sn atoms carry two iodo ligands, one is con-
nected to only one iodine and the final two carry one terminal
iodine and one bridging p-I connecting them to each other. The
second cluster comprises three tin atoms carrying two iodine
ligands, while the other three only connect to one terminal
iodide each and are connected via a ;-1 bridge.

2.1.3.3 Group 8/14 adamantane-type clusters. Group 10
clusters with group fourteen elements in the E position are
known for combinations with Ni and Pd.

The first family of such compounds with the general com-
positon [(NiPR;),(CO)s] (34-37, Fig. 3) comprise CO bridged Ni
tetrahedra with terminal phosphine ligands.**?** They are
generally prepared by reacting a Ni complex with the desired
phosphine and CO gas, if the original complex does not contain
such ligands already. These results could be transferred to
palladium in the case of [(PdP"Bus),(CO)s] (38).°

2.1.3.4 Group 14/14 adamantane-type clusters. A family of
tetrasilaadamantanes of the composition [(RSi),(CH,)s] has
been investigated, with the first examples being obtained in
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Fig.2 Examples of adamantane-type compounds with group 13 atoms in the E position: [(CH)4(BClg] (12, top left (a)), [Li(thfl4l5[(‘BuAs)4(GaCl,)el
(18, top center (b)), Li»[('BuN)4(AlH,)e] (20, top right (c)), Nax[S4(BH»)el (21, bottom left (d)), DMPyr,[S4(InMe,)¢] (25, bottom center (e)) and
[Ga(CgHsMe),l-[{AgGa(OTf)3}4Gag(OTf),4] (26, bottom right (f)). Hydrogen atoms in the organic ligands and counterions, if present, are omitted for
clarity.

high temperature reactions of either SiMe, to form [(SiMe),(- compounds was made at considerably lower temperatures and
CH,)] or SiCl, and Me;SiCl in the presence of AICI; to yield in higher yields. [(SiMe)4(CH,)s] (40, Fig. 4) could be obtained
[(SiC1)4(CH,)s] (39).*”*° In subsequent work, access to such from an AlBr; induced rearrangement of (Me,SiCH,); at 100 °C,

Table 2 Adamantane-type compounds with group 13 atoms in the E position®

Compound Reagents/conditions Method
[(CH)4(BMe)g] (11) BMe;/450 °C, 40 min H'?°
[(CH)4(BCl)g] (12) (Cl1,B),CH,/450 °C to RT, 12 h H*
[(CH)4(BEt)s] (13) HC(BEt,)3, BEt,, AlEt;/150 °C A”
[(CMe),4(BEt)q] (14) (BEt)3(CMe),, L, K/THF 7
[(EtC)4(GaEt)] (15) Et,GaH, HC=CEt/—196 °C to RT, 4 h u*
[("BuC),4(GaEt)e] (16) Et,GaH, HC=C"Bu/4 h u*
[(EtC)s(GaMe)q] (17) Me,GaH, HC=CEt/—196 °C to RT, 4 h u*
[Li(thf),],[(‘BuAs)s(GaCl,)e] (18) Li,As'Bu, GaCl,/Et,0, —78 °C to RT, 3 days c»
Li[(RN),(AlH,)s] (19-20, R = Me, ‘Bu) Li[AlH,], [RNH;]CL/Et,0, 4 weeks c*
Na,[S4(BH,)e] (21) THF-BH;, Na[BH,], H,S/0 °C c¥
Na,[Se4(BH,)q] (22) 1. Se, Na[BH,]/diglyme, 0 °C to 110 °C, 8 h B

2. THF-BH;/diglyme
Cs,[S4(BH,)6] (23) Na,[S4(BH,)s] (21), CsBr/H,0 0%
Cs,[Ses(BH,)q] (24) Nay[Se,(BH,);] (22), CsBr/H,O o%
DMPyr,[S4(InMe,)s] (25) DMPyr;[Me,In(SInMes)]s/THF, pentane, 14 days 78
[Ga(CeH5Me), ],[{AgGa(OTf)3},Gae(OTS),] (26) AgOTf, Ga/toluene, 45 °C, 1.5 h (ultrasonic activation) >

¢ "Bu = normal butyl, ‘Bu = tertiary butyl, diglyme = bis(2-methoxyethyl) ether, DMPyr = 1,1-dimethylpyrrolidinium, OTf = O3SCF;
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Fig.3 Examples of adamantane-type compounds with group 2 and transition metals in the Q position and group 14 atoms in the E position: [(u4-
0O)Cay4(2,6-dimethoxyphenyl)e] (27, left (a)), [BMIm]g[SI[{Fe(CO)3}4Sneliolz (33, center (b)) and [(NiPMesz)4(CO)g] (36 right (c)). Hydrogen atoms and
counterions, if present, are omitted for clarity.

Table 3 Adamantane-type compounds with group 2 and transition metals in the Q position and group 14 atoms in E position®

Compound Reagents/conditions Method
[(n4-O)Cay(2,6-dimethoxyphenyl)s] (27) (2,6-Dimethoxyphenyl)K, Cal,/THF, 3 days K*°
[Fe4(Ph)e(THF),] (28) Fe(acac);, PhMgBr/THF, —30 °C, 25 min c*
[Fe4(p-tolyl)s(THF),] (29) Fe(acac)s, p-tolylMgBr/THF, —30 °C, 25 min c*
[Fe,(p-tolyl)s(THF);] (30) Fe(acac)s, p-tolylMgBr/THF, —30 °C, 25 min c*
[Fe4(4-F-Ph)s(THF),] (31) Fe(acac)s, 4-F-PhMgBr/THF, —30 °C, 25 min c*
[BMIm,[{Fe(CO)3}4Snely0] (32) Snl,, Fe(CO)s, [BMIM][NTf,]/130 °C, 4 days B*?
[BMIm][S][{Fe(CO)s}4Snelio)2 (33) Snl,, NH,I, Fe(CO)s, [BMIm][OTf]/130 °C, 4 days B*
[{NiP(CH,CH,CN)3},(CO)s] (34) Tris-(2-cyanoethyl)phosphine, Ni(CO),/MeOH, B*
70 °C, 24 h
[(NiPMe;),}[BF,][(NiPMe;)4(CO)] (35) Ni(COMe)Cl(PMe;),, PMe;, TI[BF,]/CH,Cl,, RT, c*
30 min
[(NiPMe;)4(CO)] (36) Bis(cod)nickel, PMe;, CO/toluene, RT, 6 h F*®
[(NiP"Bus)4(CO)6] (37) Bis(cod)nickel, P"Bus, CO/toluene, RT, 6 h ¥
[(PAP"Bu,)4(CO)6] (38) Pd,4(CO)5(PBu;"),, CH;COOH/EtOH, pentane, J/F®

RT, 2 days or Pd(OAc),, CH;COOH, CO, PBu;"/
dioxane, Me,CO, 5 days

“cod = 1,5-cyclooctadiene, OAc = acetate, acac = acetylacetonate, BMIm = 1-butyl-3-methyl-imidazolium, NTf, =
bistrifluoridomethansulfonimide.

a) b) c)

Cl

40 62 84

Fig.4 Examples of adamantane-type compounds with group 14 elements in the Q position and group 14 atoms in the E position: [(SiMe)4(CH>)¢l
(40, left (a)), [(SiSiMe3)4(SiMe)gl (62, center (b)) and [(SiSiClz)4(GeMey)e] (84, right (c)). Hydrogen atoms are omitted for clarity.
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Table 4 Adamantane-type compounds with group 14 elements in the Q position and group 14 atoms in the E position®
Compound Reagents/conditions Method
[(SiCl)4(CH,)q] (39) SiCly, Me;SiCl, AlCl;/500 °C or [(SiMe)4(CH,)s), B/Q%73%4
Cly, 1/CCly
[(SiMe)4(CH,)s] (40) SiMe,4/700 °C or (Me,SiCH,);, AlBr;/100 °C A38A041
[(SiH)4(CH,)e] (41) Li[AIH,], [(SiMe),(CH,)s] (40) Q*
[(SiMe);SiBr(CH,)s] (42) (Me,SiCH,)s, AlBr3/100 °C )
[(SiMe),(SiBr),(CH,)s] (43) (Me,SiCH,)3, AlBr;/100 °C I
[(SiMe);SiCI(CH,)e] (44) (Me,SiCH,);, AICl;/100 °C 7
[(SiMe),(SiCl),(CH,)e] (45) (Me,SiCH,)3, AlCl3/100 °C ™M
[SiMe(SiCl);(CH,)e] (46) [(SiMe)4(CH,)s] (40), Cl,, I,/CCl, Q*
[(SiMe);SiOH(CHS,)e] (47) [(SiMe);SiCI(CH,)] (44), [NBu,4]Cl, KOH/2- Q*
methyl-2-butanol, H,O, 80 °C, 30 min
[(SiMe);SiOCH,CH,NMe,(CH,),] (48) [(SiMe);SiCl(CH,)s] (44), HOCH,CH,NMe,, n- Q"
BuLi/hexane, 69 °C, 9 h
[(SiMe);SiH(CH,)s] (49) [(SiMe);SiBr(CH,)s] (42), Li[AIH,]/Et,0, 35 °C, 4 Q"
days
[(SiMe);SiNEt,(CH,)s] (50) [(SiMe);SiCl(CH,)] (44), LiNEt,/hexane, 24 h Q*
[(SiMe);SiPh(CH,)s] (51) [(SiMe);SiCI(CH,),] (44), LiPh/Et,O Q¥
[(SiMe);SiOMe(CHS,)e] (52) [(SiMe);SiBr(CH,)s] (42), NaOMe,/MeOH Q*
[(SiMe);SiF(CH,)6] (53) [(SiMe);SiBr(CH,)s] (42), ¢-C¢H,;NH;F,/CHCly Q¥
[(SiMe);SiOT(CH,)s] (54) [(SiMe)4(CH,)s] (40), IC], AgOTf/CH,Cl,, 1 day Q*
[(SiOTf),(SiMe),(CH,)6] (55) [(SlMe) SiOTf(CH,)s] (54), ICl, AgOT{/CH,Cl,, 24 Q*°
[(SiMe)4(CH,)sCHSiMe,Ph] (56) [(SlMe) (CH,)s] (40), CISiMe,Ph, n-BulLi, QY
KOCMe;/THF, 0 °C, 10 h
[(SiMe),(CH,);CHSiMe,CH,SiMe,Ph] (57) [(SiMe)4(CH,);CHSiMe,Ph] (56), Br,, QY
LiCH,SiMe,Ph/
[(SiMe),(CH,)sCHSiMe,CH,SiMe,CH,SiMe;] [(SiMe),4(CH,)s] (40), QY
(58) Me;SiCH,SiMe,CH,SiMe,Br, n-BuLi, TMEDA/
hexane, 40 °C, 5 h
[(SiMe)(CH,)sCH(SiMe,CH,SiMe,CH,)Si] (59) [(SiMe),(CH,)sCHSiMe,CH,SiMe,CH,SiMej;] QY
(59), AIBrs/30 °C, 20 h
[(SiBr)(SiMe),(CH,)sCH(SiMe,CH,SiMe,CH,)Si] [(SiMe),(CH,)sCHSiMe,CH,SiMe,CH,SiMej;] QY
(60) (59), AIBrs/30 °C, 20 h
[(SiMe)5Si(CH,)6][CHB,;Cly4] (61) [Ph3C][CHB,;Cly4], [(SiMe);SiH(CH,)s] (49)/PhBr Q*
[(SiSiMe;)4(SiMe,)e] (62) Si;sMe,4, [CPh;][B(CgFs)s]/Toluene, 48 h Jaose
[(SiSiMe;)4(SiMe,)s(SiMeCl)] (63) Si;aMe, 4, AICl;, Mel, Me;SiCl/C¢Hs, 48 h 7*°
[(SiSiMe;)4(SiMe,)s(SiMeBr)] (64) Si;sMe, 4, AlBr;, Mel, Me;SiBr/CqHg, 17 days 7°°
[(SiSiMe,Cl)(SiSiMe3);(SiMe,)¢] (65) 1. [(SiSiMe3)4(SiMe,)s] (62), KOCMej3, 18-crown- Q*°
6/toluene, 16 h
2. Me,SiCl,/1 h
[(sisiMe,Ph)(SiSiMe;);(SiMe,)s] (66) 1. [(SiSiMe3)4(SiMe,)q] (62), KOCMe;, 18-crown- Q*°
6/toluene, 16 h
2. Me,PhSiCl/3 h
[(SiSiPh3)(SiSiMe;);(SiMe,)q] (67) 1. [(SiSiMe3)4(SiMe,)q] (62), KOCMe;, 18-crown- Q*°
6/toluene, 16 h
2. Ph,SiCl/3 h
[(SiSnMe;)(SiSiMe;);(SiMe,)e] (68) 1. [(SiSiMe3)4(SiMe,)q] (62), KOCMe;, 18-crown- Q*°
6/toluene, 16 h
2. Me;SnCl/3 h
[(SiGeMe;)(SiSiMe;);(SiMe,);] (69) 1. [(SiSiMe;)4(SiMe,)s] (62), KOCMe;, 18-crown- Q*°
6/toluene, 16 h
2. Me;GeCl/3 h
[(SiH)(SiSiMe3);(SiMe,)q] (70) 1. [(SiSiMe3)4(SiMe,)q] (62), KOCMe;, 18-crown- Q*°
6/toluene, 16 h
2. HCI/3 h
[{SiP(NET,),}(SiSiMes)s(SiMe,)s] (71) 1. [(SiSiMe3)4(SiMe,)s] (62), KOCMe;, 18-crown- Q°
6/toluene, 16 h
2. P(NET,),Cl/3 h
[(SICH,SMe)(SiSiMe;);(SiMe,)s] (72) 1. [(SiSiMe3)4(SiMe,)q] (62), KOCMe;, 18-crown- Q*°
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Table 4 (Contd.)
Compound Reagents/conditions Method
[(SiMe)(SiSiMe;);(SiMe,)s] (73) 1. [(SiSiMes)4(SiMe,)s] (62), KOCMe;, 18-crown- Q*°
6/toluene, 16 h
2. Methyl-p-toluenesulfonate/3 h
[(SiBr)(SiSiMe;);(SiMe,)s] (74) 1. [(SiSiMe3)4(SiMe,)s] (62), KOCMe3, 18-crown- Q*°
6/toluene, 16 h
2. 1,2-Dibromoethane/3 h
[(SiCI)(SiSiMe;)5(SiMe,)6] (75) 1. [(SiSiMe3),(SiMe, )] (62), KOCMe;, 18-crown- Q*°
6/toluene, 16 h
2. PCl3/—78 °C, 3 h
[(SiCH,SMe),(SiSiMe;),(SiMe,)s] (76) 1. [(SiSiMe3)4(SiMe,)e] (62), KOCMej3, 18-crown- Q*°
6/toluene, 16 h
2. CICH,SMe/3 h
[(SiCH,SMe);(SiSiMe;)(SiMe,)s] (77) 1. [(SiSiMe3)4(SiMe,)q] (62), KOCMe;, 18-crown- Q*°
6/toluene, 16 h
2. CICH,SMe/3 h
[(SiCH,SMe),(SiMe,)c] (78) 1. [(SiSiMe3)4(SiMe,)q] (62), KOCMe;, 18-crown- Q>
6/toluene, 16 h
2. CICH,SMe/3 h
[(SiMe)(Si'Pr)(SiSiMe;),(SiMe,)s] (79) 1. [(SiMe)(SiSiMes)s(SiMe,)s] (62), KOCMej, 18- Q>
crown-6/toluene, 16 h
2.Chlorotriisopropylsilane/3 h
[(SiMe)(Si'Pr)(SiCH,SMe) (SiSiMe;)(SiMe,)s] (80) 1. [(SiMe)(Si'Pr)(SiSiMe;),(SiMe,)s] (79), Q*°
KOCMej;, 18-crown-6/toluene, 16 h
2.CICH,SMe/3 h
[(SiMe)(Si'Pr)(SiCH,SMe)(SiBr)(SiMe,)s] (81) 1. [(SiMe)(Si'Pr)(SiCH,SMe) (SiSiMe;)(SiMe,)e] Q*°
(80), KOCMej3, 18-crown-6/toluene, 16 h
2. 1,2-Dibromoethane/3 h
[(SiSiCl,),(GeMe,),(SiCl,),] (82) Me,GeCl,, Si,Clg, [Bu,N]CI/CH,Cl,, 13 days c?!
[(SiSiCl;)4(GeMe,)s(SiCl)] (83) Me,GeCl,, Si,Cls, [Buy,N]CI/CH,Cl,, 19 days ct
[(SiSiCl,),(GeMe,),] (84) Me,GeCl,, Si,;Cls, [BuyN]Cl/CH,Cl,, 60 °C, 6 days ct
[(SisiMe;)4(GeMe,)¢] (85) [(SiSiCl3)4(GeMe,)s] (85), MeMgBr/Et,0, 60 °C, 1 Q>
day
[(SisiMe;),(GeMe,)4(GeMe,),] (86) [(SiSiCl3)4(GeMe,)4(GeMe,),] (86), MeMgBr/ Q>
Et,0, 60 °C, 1 day
[(SisiMe;)4(GeMe,)s(GeMe,)] (87) [(SiSiCl3)4(GeMe,)s(GeMe,)] (87), MeMgBr/THF, Q>
Et,O, 1 day
[(SiSiCl;)4(SnMe,)4(SiCl,),] (88) Me,SnCl,, Si,Cls, [BuyN]Cl/CH,CL,, 3 days Q>
[(SiSiCl5)4(SnMe,)5(SiCl,)] (89) [(SiSiCls)4(SnMe,)4(SiCl,),] (88), [BusN|Cl/ Q>

CH,Cl,, 60 °C, 1 day

“ TMEDA = tetramethylethylenediamine, ‘Pr = isopropyl.

which could then in turn be reacted with Cl, and I, to form 39 or
be treated with Li[AlH,] to form the hydrogen terminated
[(SiH)4(CH,)e] (41).>>**** Via both of these routes, tetrasilaada-
mantanes with mixed methyl and halide positions can be iso-
lated as well.***** These clusters described so far are used as the
basis for ligand exchange reactions at the Si sites (Method Q,
leading to 42-55), often by exchanging the halides found in
various positions.*®**¢ Asides from derivatization on the
silicon atom, the CH, moiety can also be a target for lithiation to
give stepwise addition of longer C/Si chains (56-60).*” Lastly, it
was also shown that the ligand of a single Si site can be
abstracted to obtain a charged cluster cation [(SiMe);Si(CH,)s]
[CHB4;Cly4] (61) by reacting the carbocation [Ph;C]" with
[(SiMe);SiH(CH,)s] (49).*®

Realizing the first purely Si based adamantanes took a 9 step
synthesis, the last one being a rearrangement of a tricyclic

© 2024 The Author(s). Published by the Royal Society of Chemistry

compound Si;4sMe,, to [(SiMe),(SiMe,)¢] (62, Fig. 4) reminiscent
of a synthesis route to organic adamantanes by Schleyer (see
section 2.2).* In recent times, the topic has been reinvestigated,
resulting in a streamlined gram scale synthesis method, and
strategies for a site selective functionalization, which can lead
to one or more methyl groups being substituted at the Q posi-
tion (63-81).*°

While the pure silaadamantanes were not obtainable from
simple building blocks, compounds with mixed Ge/Si sites were
isolated by a mixture of Me,GeCl,, Si,Clg and ["Bu,N]Cl, leading
to [(SiSiCl;)4(GeMe,)s_(SiCly),] (82-84, x = 0-2, Fig. 4), with the
amount of Ge incorporated rising with the use of higher
amounts of ["Bu,N]CL>* In follow up investigations, site selec-
tive methylation at the Q position of these compounds was
realized using the Grignard reagent MeMgBr (85-87).>> It was
also possible to obtain the corresponding

Chem. Sci., 2024, 15, 9438-9509 | 9447
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Fig.5 Examples of adamantane-type compounds with group 15 elements in the Q position and group 14 atoms in the E position: [P4(GeMe,)g]
(106, left (a)), [P4(SnMey)g] (107, center (b)) and [As4(SiMe,)g] (110, right (c)). Hydrogen atoms are omitted for clarity.

stannasilaadamantanes [(SiSiCl;),(SnMe,)s_(SiCl,),] ((88-89, x
= 1-2) by substituting the Ge component for the higher
homolog Me,SnCl, in the reaction.

2.1.3.5 Group 15/14 adamantane-type clusters. [P,(SiRy)e]
(90-95) adamantane-type clusters with different ligands R are
formed by adding Cl,SiR, to a solution of Na, K and P,.>*7¢ A
route to mixtures of such compounds with a heterogeneous
ligand sphere [P4(SiRz), ,(SiR’2),] (90-92, 96-105) is by the
thermolysis of (R;Si),P-SiR’,CL.%

The germanium compound [P,(GeMe,)q] (106, Fig. 5) is ob-
tained by a Hg catalyzed reaction of Cl,GeMe,,**** while the
heaviest congeners [P4(SnR,)e] (107-109) were first suggested to
be detected as a side product in the condensation reaction of
PH; and R,SnCL,.*° The first larger yield synthesis and crystal-
lographic investigation of 107 (Fig. 5) was carried out after an
unexpected rearrangement of P(SnMe;); catalyzed by [(ZnCl),-
Fe(CO)4(THF),] was observed.®

The analogous [As,(SiMe,)¢] (110, Fig. 5) is only found as
a side product in the thermolysis of Me,Si(AsSiMe3),.>

2.1.4 Q/group 15 adamantane-type clusters. Compounds
with group 15 atoms in the E position are much rarer than those
of the neighboring groups. They are spread around the periodic
table with examples known in combination with the elements of
groups 2, 8 and 11-15, of which the group 15/15 combination is
the most common, comprising nearly half of all known species.

Adamantane like scaffolds are only found for the lowest
homologues, with NR,, NR, PR, or PR making up the bulk of the
known groups in the E position. Approaches to obtain those
compounds are very diverse, with no unifying method between
the different groups.

2.1.4.1 Group 2/15 adamantane-type clusters. Two studies
have investigated Be/N adamantane-type clusters. One publi-
cation found the anionic azide compounds [(BeX),(N;)e] (111-
112, Fig. 6) by reactions of Me;SiN; with (Ph,P),[Be,X¢].** The
other investigated the formation of amido adamantanes
[(BeNH;),(NH,)s]*" (in compounds 113-118) in liquid ammonia
from elemental Be with varying counterions.®

2.1.4.2 Transition metal/15 adamantane-type clusters. There
are only a few examples of group 15 containing adamantanes
with transition metals. Two of them can be formed by the
addition of Ph,PH to a metal salt in the presence of "BuLi to
yield [Li(thf),],[(CdPPh,),(PPh,)s] (119, Fig. 6) or [Li(thf),],[-
Cuy(PPh,)s] (120) depending on the element used.***” Two
neutral iron clusters with a [Fe,]°" core, comprising iron centers
in a formal oxidation state of +1.5 were investigated.®®®® One
could be obtained with a phosphide ligand, [Fe,(P'Pr,)s] (121),
and the other with a ketimide ligand, [Fe,(N=CPh,)s] (122).
Both are prepared in the same way as the Cd and Cu ada-
mantanes by reacting the lithiated ligand with a metal salt.

Table 5 Adamantane-type compounds with group 15 elements in the Q position and group 14 atoms in the E position®

Compound Reagents/conditions Method
[P4(SiR,)s] (90-95, R, = Me,, MeEt, Et,, MePh, (Me)(C,H;), MeH) 1. P,, K, Na,/DME, —78 °C D>
2. CL,SiR,/DME, 24 h

[P4(SiMe,)s_(SiEt,),] (90, 96-100, 92, x = 0-6) (Me;Si),P-SiEt,Cl/300 °C H*’
[P4(SiMe,)q_(SiMeEL),] (90, 101-105, 91, x = 0-6) (Me;Si),P-SiMeEtCl/300 °C H*
[P4(GeMe,)q] (106) Me,Ge(PH,),, Hg/100 °C, 24 h H%%0
[P4(SnR,)s] (107-109, R = Me, "Bu, Ph) R,SnCl,, PH;/or P(SnMes)s, [(ZnCl),Fe(CO),(thf),]/THF, 4 days D/jeoet
[As4(SiMe,)q] (110) Me,Si(AsSiMe3),/240 °C, 48 h H5>%3

“ DME = 1,2-dimethoxyethane.
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2.1.4.3 Group 13/15 adamantane-type clusters. [(NMe;),-
AICl], can dimerize under elimination of NMe; to form
[(AlC]),(NMe,)4(NMe),] (123), with higher yields achieved in the
presence of B,(NMe,),.”%”* An anionic derivative [(HAL),(-
NPh)¢{Li(OEt,)};]” (in 124, Fig. 6) featuring a Li capped ada-
mantane is prepared by the combination of PhN(H)Li and
AlH,.72

The only known Al/P adamantane compound, [(Ar™®Al),(-
PH,),(PH),] (125), is isolated after the reaction of PH; with
[Ar™°AlH,],.” An example for Ga in the Q position [(PhGa),(-
NH'Bu),(N'Bu),] (126) can be synthesized from [PhGa(NMe,),],
and H,N'Bu.”

2.1.4.4 Group 14/15 adamantane-type clusters. Group 14/15
adamantanes have been investigated for E = P. [(PhSi),(PPh)]
(127) and its germanium congener (128) are obtainable by
a simple condensation reaction of PhQCl; and K,PPh.”” The
same principle can be used for the synthesis of [(*PrSi),(PH)s]
(129, Fig. 6).”° Another synthesis method, utilizing preformed
fragments [Li(tmeda)],[CcH4(PSiMe;),-1,2] with Si“BuCls, leads
to the formation of the asymmetrical [(CoH,{P(Si‘BuP)
1,2});(Si‘Bu)] (130).””
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d) e)
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2.1.4.5 Group 15/15 adamantane-type clusters. Compounds
of the type [P4(NR)¢] form the vast majority of clusters within
this group combination. They are mostly obtained by conden-
sation reactions of PCl; with RNH, (131-133),*®" a synthesis
strategy which also works when substituting PCl; for AsCl; to
form the lesser investigated congeners [As,(NR)s] (134-136,
Fig. 6).*>%* Notably, another method of achieving an
adamantane-type topology is a reaction starting from
a precursor featuring a P,N, four membered ring, CIP(N'Pr),-
PN'PrSiMe;, which dimerizes when heated to form the so called
double decker-type cluster [P4(N'Pr)s], an isomer to the
adamantane-type architecture consisting of two four membered
rings bridged by two bridging atoms.**** This cluster will in turn
rearrange to the adamantane compound (137); an isomeriza-
tion that also plays a major role in the chemistry of group 14/16
adamantane-type structures and for one Mn/O cluster. The
same rearrangement from the double decker was required to
form [P,(N‘Bu)s] (138), albeit that ball milling was needed
instead of higher temperatures to prompt the rearrangement.*®

These compounds can be used as precursors in ligand
addition reactions to the pnictogen. The first one investigated

124
f)

150

Fig. 6 Examples of adamantane-type compounds with group 15 atoms in E position: (Ph4P)a[(Be4Br)a(Ns)el (112, top left (a)), [Li(thf)alal(-
CdPPh,)4(PPhy)el (119, top center (b)), [Li(OEt,)sl[(HAD4(NPh)s{Li(OEt,)}z] (124, top right (c)), [('PrSi)4(PH)el (129, bottom left (d)), [As4(NMe)gl
(134,bottom center (e)) and Najo[P4(NH)gN4I(NH2)6(NH3)g 5 (150, bottom right (f)). Hydrogen atoms and counterions, if present, are omitted for

clarity.
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was the addition of Mel resulting in [P3;(PMe)(NMe)sMe]l
(139).7%7% Adding S or O atoms in the form of Me;NO or
elemental sulfur leads to [(OP)4(NR)e] (140) or [(SP)4(NR)] (141)
respectively. The addition of sulfur can be carried out stepwise
to achieve the desired degree of sulfurization (142-145).5%%3
The addition of transition metal moieties was also realized by
reactions with [Ni(CO),] to 131 and 134, resulting in ada-
mantanes with terminal Ni(CO); groups (146 and 147).** The
ligand sphere on the phosphorous atom can also be expanded
stepwise by introducing a SiMe; group in [(PNSiMe;),(NMe)s]
(148), which can subsequently be exchanged for PPh; (149).*
Lastly, purely inorganic and anionic clusters were obtained by
the rearrangement of P;N; with addition of alkaline metal NH,
salts to yield cluster cores [(PN),Ng] (150-151, Fig. 6) with
different degrees of protonation.®®®”

2.1.5 Q/group 16 adamantane-type clusters. A group 16
element is the most common atom in the E position of
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inorganic adamantane-type structures. Examples are known for
all groups 2-15 (with the notable exception of monomeric group
10 adamantanes) as well as lanthanides. Most often, the
chemistry of the oxo-adamantanes is quite different from its
higher congeners, stemming from the unique properties of the
elements in the second period. Groups 2 and 4-6 nearly exclu-
sively feature compounds with O atoms in the E position, while
the reverse case is observed in the groups 11, 12 and 14, which
mainly comprise S, Se and Te. There are a few reoccurring
structural motifs and synthetic approaches, especially for clus-
ters with the heavier elements S, Se and Te. One family of
chalcogenolate compounds [(QER)4(ER)¢]? with differing
charges q can often be isolated from simple transition metal
salts (groups 7-9 and 11-12) and deprotonated chalcogenols,
either through in situ deprotonation or by using metal salts. A
variant comprising halides X [(QX)4(ER)¢])? or other ligands in
the X position is sometimes achievable by the choice of the

Table 6 Adamantane-type compounds with group 15 atoms in E position®

Compound Reagents/conditions Method
(Ph,P),[(BeCl)4(N3)6] (111) Me;SiN3, (Ph,P),[Be,Cls]/CH,Cl,, 2 days c*
(Ph4P), [(Be4Br)4( 3)s] (112) Me;SiN;, (Ph,P),[Be,Brg)/CH,Br,, 2 days c*
[(BeNH;)4(NH,)6]CL, (113) BeCl,, Be/NHj, 2 days B®®
[(BeNH3)4(NH,)sBr, (114) BeBr,, Be/NHj;, 2 days B®®
[(BeNH;),(NH,),]I, (115) NH,I, Be/NHj, 29 days B®®
[(BeNH,),(NH,)s](CN), (116) Me;SiCN, Be/NH;, 2 days B®
[(BeNH;),(NH,)6](SCN), (117) NH,SCN, Be/NHj, 4 days B®®
[(BeNH3)4(NH,)6](N3), (118) Me;SiN;, Be/NH;, 4 days B®
[Li(thf),],[(CdPPh,),(PPh,)e] (119) "BuLi, Ph,PH, [Cd{N(SiMe3;),},]/THF, 80 °C to RT, 12 h c*
[Li(thf),]o[Cus(PPhy)e] (120) "BuLi, Ph,PH, CuCN/toluene, —78 °C c*
[Fey(P'Pr,)s] (121) [FeBr,(thf),], 'Pr,PLi/DME, RT c*®
[Fe,(N=CPh,)s] (122) FeBr,, LIN=CPh,, Zn/THF, —25 °C to RT, 18 h c*
[(AIC])4(NMe,)4(NMe),] (123) (NMe,),AlCl, By(NMe,)4/240 °C, 10 h B
[Li(OEt,);][(HAL),(NPh){Li(OEt,)}5] (124) PhN(H)Li, H;Al-N(Me)CsHg/Et,O D"
[(Ar™e°Al)4(PH,),(PH),] (125) (Ar™°®AlH,),, PH/toluene, 80 psi, 24 h G”
[(PhGa),(NH'Bu),(N'Bu),] (126) [PhGa(NMe,),],, H,N'Bu/2 h c
[(PhSi)4(PPh)e] (127) PhSiCl;, K,PPh/C¢Hg, Et,O, DME, 10 h D”®
[(PhGe),(PPh)s] (128) PhGeCl;, K,PPh/C¢Hg, Et,O, DME, 10 h D”®
[(‘PrSi)s(PH)s] (129) Li[Al(PH,),], 'PrSiCl3/1,2-DME, —30 °C, 3 h c’®
[(CeH4{P(Si‘BuP)1,2})5(Si'Bu)] (130) [Li(tmeda)],[C¢H4(PSiMe;),-1,2], Si‘BuCl;/THF, —78 °C 77
[P4(NMe)] (131) MeNH,, PCly/—78 °C to RT, 4 days G7%7°
[P4(NEt)s] (132) PCl;, EtNH,/—60 °C to 150 °C G881
[P4(NBn)e] (133) PCl;, "BuLi, BnNH, NEt;/THF, —60 °C to RT, 5 days D%
[Asy(NMe)] (134) AsCl;, MeNH,/C¢Hg, 0 °C, 1 h G883
[As4(N'Pr)q] (135) AsCl, 'PrNH,/pentane, 1 h D*?
[As, (N"Bu) ] (136) AsCl;, "BuNH,/C¢Hg, 60 °C, 30 min D%
[P4(N'Pr)] (137) 1. CIP(N'Pr),PN'PrSiMe;/MeCN, 82 °C, 15 h K385
2. 158 °C, 3 days
[P4(N‘Bu)e] (138) [P4(N‘Bu)s] (double decker isomer), LiCl/ball milling, 90 min M5
[P5(PMe)(NMe)sMe]l (139) [P4(NMe),] (131), Mel/0 °C pe7987
[(SP)4(NEt)e] (140) [P4(NEt)s] (132), S/toluene, 95 °C, 9 h p*°
[(OP),(NMe)] (141) [P,(NMe),] (131), Me;NO/CHe, 12 h pooot
[P,(SP)s_n(NMe)s] ((142-145, n = 1-4) [P4(NMe)e] (131), S or [P4(NMe)e] (131), S/CS,, —20 °C, 12 h poso3
[{(CO);NiP},(NMe),] (146) [P4(NMe)] (131), [Ni(CO),}/3 h p*
[{(CO);NiAs},(NMe),] (147) [As,(NMe)e] (134), [Ni(CO),]/CHCl3, 3 h, 5 min p™
[(PNSiMe;)4(NMe)q] (148) [P,(NMe),] (131), Me;SiNg/toluene, 100 °C, 12 weeks P
[(PNPPh;),(NMe)s] (149) [(PNSiMe;),(NMe)c] (148), Ph3PBr,/MeCN, 55 °C, 3 days p»
Nay o[P4(NH)6N,|(NH,)6(NHs)o 5 (150) P3N, NaNH,/600 °C, 5 days A%
Rbg[(PNH),Ng|(NH,), (151) P;N5, RbNH,/400 C, 5 days A

a pMe6 _ C6H3_2,6(C6H2»2,4,6-Me3)2~
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correct precursor salt or counterion, as well as by exchanging
a chalcogenolate in this terminal position.

Chalcogenide adamantane-type clusters of the general
composition [(QRy_3)4E¢]? are found in a large family of
compounds of the groups 13 and 14 as well as a single example
with Ru. They are obtainable by condensation reactions using
a metal (pseudo)halide and a chalcogenide source such as
alkaline metal chalcogenides, H,E or (SiMe;),E.

An additional family of purely inorganic adamantane-type
clusters [Q4E;] is found for the groups 13-15. They are mostly
accessible from the elements and simple salts by Methods A-C
or by extracting alloys in accordance with Method E.

2.1.5.1 Group 2/16 adamantane-type clusters. In group 2, a Be
hydroxide cluster Na,[(BeOH)4(OH)s] (152) is reported to form
from BeSO, in basic aqueous solution.”® Two further oxygen
centered species are obtainable with Ba. One, [(j,-O)Bay(p-
OC¢H,(CH,NMe,)3-2,4,6)q] (153, Fig. 7), is formed with a tri-
dentate ligand, which both delivers the oxygen in the E position
and coordinates to the two closest barium atoms via nitrogen
atoms.” The other is obtained from a Ba dimer [Ba
{N(SiMej3),},], assembling around (mes),BOH to form [(j4-O)
Ba,{OB(mes),}s] (147)."*°

2.1.5.2 Group 3/16 adamantane-type  clusters. [(p4-
S)(Tp™°?Y),(SBn)] (154, Fig. 7) is a unique compound in two

a) b)
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ways, as it is both the only group 3 and S centered compound in
this review.' It is created by adding the Y complex
[Tp™*YBn,(thf)] with a tridentate ligand to elemental sulfur,
which creates the cluster in a redox reaction.

2.1.5.3 Group 4/16 adamantane-type clusters. All but one
literature known compound in this category feature a Ti',O¢
core. The first two examples were cationic in nature,
[(TiL;)406]*", with each Ti exhibiting three bonds to neutral
ligands L. For [{Ti(TACN)},O¢|Br, (156, TACN = 1,4,7-tri-
azacyclononane), this was achieved by hydrolysis of TiO(acac),
in the presence of TACN and NaBr,'** while the second example
[{Ti(dmso)3}406]Cl, (157) was generated in a solution of TiCl,,
Na,S, and PPh; in DMSO under partial decomposition of the
solvent to yield the required oxygen atoms.'*”

A larger family of neutral compounds contains derivatives of
cyclopentadienyl at the Ti centers [(TiCp®),06] (158-164, 158 in
Fig. 7), mainly obtained through hydrolysis of various Ti
cyclopentadienyl complexes or through reactions with other O
sources.'** %

More complex neutral clusters are isolated when the Ti,Og is
formally extended by additional M/O fragments. This could be
observed for [Tiy(dmae)s(OH)(0)sCus(benzoate)] (165, dmae =
N,N-dimethylaminoethanolate) and its methyl derivative
(166).' They form from the respective hydrated Cu benzoates

c)

Y. \
\/?\’»S Ti

153 155 158
d) e) f)
Zr ’
. Cr
Ta ‘ o ( o
) l 1
171 174 178

Fig. 7 Examples of adamantane-type compounds with group 2—-6 elements in Q position and group 16 atoms in the E position: [(p4-O)Bay(p-
OCgHo(CHoNMe,)s-2,4,6)6] (153, top left (a)), [(na-S)(TpMe2Y)4(SBn)gl (155, top center (b)), [(TiCp*)4O¢l (158, top right (c)), [(s-O)Zr(acac)}a{-
Zr(OMe)(acac)}(DBcat)s(OMe)s] (171, bottom left (d)), [K-18-crown-6]4[(TaClz)4Og¢] (174,bottom center (e)) and (enH)[Cr4(OH)4(hpdta),] (178,
bottom right (f)). Hydrogen atoms and counterions, if present, are omitted for clarity.
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and Ti(dmae), in toluene and feature different coordination
modes of the Cu/O fragments.

Two isostructural compounds [{Ti(thf)},0sM,(TFA)g(thf),]
(167-168, M = Fe, Cd; TFA = trifluoroacetic acid) show
a symmetric buildup, with the M centers being connected to
opposing oxygen atoms in E position and via four TFA groups
each to the neighboring Ti centers.”>*** They are obtained from
[Fe3O(OAc)s(H,0)3]NO;3; (OAc = acetate) or [(OAc),Cd(H,0),],
and after addition of a Ti complex and TFA in THF.

A highly charged anion [Ti4O(Heit);(cit)]’~ (in 169, H,cit =
citric acid) is crystallized from a reactive solution of citric acid
and [Ti{'PrO),] in a H,O/THF mix. The addition of [Co(NH3)s]Cl;
yields the cobaltate salt, which can be converted to the Na
analog (170) by ion exchange chromatography.'**

[(n4-O){Zr(acac)}4{Zr(OMe)(acac)}(DBcat);(OMe);] (171, acac
= acetylacetonate, H,DBcat = 3,5-di-tert-butylcatechol, Fig. 7),
hydrolytically obtained from [Zr,(acac),(DBcat),], is a singular
Zr example in this group in which half of the E positions are
occupied by methoxy groups and half of them by DBcat groups,
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2.1.5.4 Group 5/16 adamantane-type clusters. There are only
three unrelated examples of different group 5 oxides in this
group.

The vanadium species [(VCp*),06] (172) stems from a rear-
rangement of the trimeric species [Cp*V(O)(p-O)]; after addition
of PMe,Ph."**

The cluster compound [{HBO-3,5-(‘Bu),NbCl},04] (173, HBO
= 2-(2/-Hydroxyphenyl)benzoxazole) is the simple hydrolysis
product of [HBO-3,5-("Bu),NbCl,]."**

Using a water containing sample of 18-crown-6 in a reaction
of TaCl; and K,Ss generates the heaviest congener [K-18-crown-
6]4[(TaCl;),0¢] (174, Fig. 7) with an anionic cluster scaffold.**®

2.1.5.5 Group 6/16 adamantane-type clusters. Two cationic
hydroxo clusters of the type [(CrR),(OH)c]?" (in 175-177) can be
obtained by hydrolysis of Cr precursor complexes.'"”**® In the
case of a combination of CrCl; and the pentadentate ligand
hpdta (Hshpdta = hydroxypropanediaminotetraacetic acid),
a compound with the cationic cluster [Cr,(u-OH),(hpdta),]** (in
178, Fig. 7) was isolated, in which two of the oxygen atoms in E

which also coordinate to one Zr center each.'*?

position stem from the hpdta ligands."™

Table 7 Adamantane-type compounds with group 2—6 elements in the Q-position and group 16 atoms in the E-position®

Compound Reagents/conditions Method
Na,[(BeOH),(OH),] (152) BeSO,, Ba(OH),, NaOH/H,0, pH 13.2, 18 h c®
[(1t4-O)Bay(1-OCeH,(CH,NMe,)5-2,4,6)] (153) K[(OCsH,(CH,NMe,)5-2,4,6), Bal,/toluene K*
[(14-0)Ba{OB(mes),}¢] (154) (mes),BOH, [Ba{N(SiMe;),},]» c'°
[(na-S)(Tp™®Y)4(SBn)s] (155) S, [Tp™°*YBn,(thf))/THF, RT, 18 h ct
[{Ti(TACN)},O4]Br, (156) TiO(acac),, 9aneN;, NaBr/Me,CO, H,0, 50 °C, 30 min 1'%2
[{Ti(dmso);}406]Cl, (157) Na,S,, PPh,, TiCl,/DMSO, RT c'e
[(TiCp*),06] (158) Cp*TiCl;, NH,OH/toluene, RT, 3 days or Cp*Ti(OMe);/H,O, RT [1os10s
[(Tlexph)4O6] (159) Cp™* Ti(OME);/Me,CO, H,0, 100 °C, 30 min 1ee
[{Ti(n’-CsMe,SiMe,NHNMe,)},O¢] (160) [(n°-CsMe,4)SiMe,(NNMe,)]Ti(NMe),/H,0, toluene, RT, 5 h "7
[{Ti(OHF)}40¢] (161) [(OHF)Ti(OMe);])/Me,CO, H,0 56 °C ¢
[{Ti(n>-CsMe,SiMe;)},0¢] (162) (m’-CsMe,SiMe;),Ti(O)/pentane, RT, 2 weeks 108
[{Ti(n*-CsMe,SiMe,Ph)},0¢] (163) (n°-CsMe,SiMe,Ph),Ti(O)/pentane, RT, 2 weeks 108
[{Ti(n"-CsMe,'Pr)},0] (164) (n°-CsMe,'Pr),Ti(O), Na,0,/THF, RT, overnight '8
[Tis(dmae)s(OH)(0)sCug(benzoate)s] (165) Cu(benzoate), 2H,0, Ti(dmae),/toluene, RT, 2 h c'°
[Tis(dmae)s(OH)(0)sCuq(2-methylbenzoate)s] (166) Cu(2-methylbenzoate), - 2H,O, Ti(dmae),/toluene, RT, 2 h c'°
[{Ti(thf)},O6Fe,(TFA)s(thf),] (167) [Fe;0(0Ac)s(H,0)5]NO;, [(EtOEtO),Ti], TFA/THF, RT, 1 h jre
[{Ti(thf)};06Cd,(TFA)g(thf),] (168) [(OAC),Cd(H,0),], [Ti{'PrO),], TFA/THF, RT, 4 h ctt
[Co(NH3)e]5[Ti,O6(Hcit)s(cit)] (169) [Ti{'PrO),], H,cit, [Co(NH;)s]Cly/THF, H,0, 90 °C 1 h '
Nay[Ti,O4(Hcit);(cit)] (170) [Co(NH3)6]3[TisO6(Hcit)s(cit)] (169)/ion exchange chromatography o'?
[(14-O){Zr(acac)},{Zr(OMe)(acac)}(DBcat);(OMe);] (171) [Zr,(acac),(DBcat),)/CH,Cl,, MeOH, H,0, RT |
[(VCp*)106] (172) [Cp*V(O)(1-O)]3, PMe,Ph/THF 7
[{HBO 3,5-(‘Bu),NbCl},06] (173) HBO-3,5-(‘Bu),NbCl,, H,O/Toluene, THF, RT, 12 h |
[K-18-crown-6],[(TaCl;),06] (174) K,Ss, TaCls, 18-crown-6, H,O/CH,Cl,, RT, 20 h 1'e
[(Cp*Cr)4(OH)6][Cp*Cr(CO);] (175) [(Cp*),Cr,(CO),]/H,0, toluene, 111 °C, 24 h |
[{(Cp¥)Ct}4(OH)G][BF.], (176) [(CP*Cr),(OH)[Cp*Cr(CO),] (175), H[BE,] I
[{Cr(tach)}4(OH)6](ClO,),(CF3S05)s_, (177) [Cr(tach)(CF;503);], NaOH,/H,0 s
(enH,)[Cr4(OH),(hpdta),] (178) Hshpdta, en, CrCly/H,0, 85 °C, 24 h K
[{MoO(IPAP)},06] (179) 1. HIPAP, [M0O,Br,(DMSO0),], NEt;, PMe;/MeOH, RT, 18 h |
2. PMej/toluene, RT, 18 h
[{W(O)(tdmap)},0] (180) [W(0)(OPr),], Htdmap/toluene, H,0, 'PrOH, reflux, 24 h e
[{(W(0)(S-Phoz)},06] (181) [W(CO)(C,Me,)(S-Phoz),], pyridine-N-Oxide/CH,Cl,, RT, 24 h 124
[(WPMe,Ph),Se] (182) [Wa4(13-S),(1-S)4Cly(PMe,Ph)s], Na(Hg)/THF, 8 h |

“mes = 2,4,6-Me;-CgH,, Tp™* = tri(3,5 dimethylpyrazolyl)borate), TACN = 1,4,7-triazacyclononane, DMSO = dimethyl sulfoxide, Cp*™" =
CsMe,Ph, OHF = 1,2,3,4,5,6,7,8-octahydrofluorenyl, dmae = N,N-dimethylaminoethanolate, TFA = trifluoacetic acid, Hycit = citric acid,
H,DBcat = 3,5-di-tert-butylcatechol, HBO = 2-(2’-hydroxyphenyl)benzoxazole, tach = 1,3,5-triaminocyclohexane, en = ethylendiamine, Hshpdta

= hydroxypropanediaminotetraacetic acid, HIPAP =

N-(tert-butyl)-3-

OC(CH2NMe,);, S-Phoz = 2-(4',4’-dimethyloxazoline-2'-yl)thiophenolate.

9452 | Chem. Sci, 2024, 15, 9438-9509
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The only known Mo congener [{MoO(IPAP)},0¢] (179, HIPAP
= N-(tert-butyl)-3-((3,5-di-tert-butyl-2-hydroxybenzylidene)
amino)-propanamide) is formed as a side product during the
reduction of the complex [Mo(O),(IPAP),] using PPh; and could
only be isolated in trace amounts.**®

Two structurally related oxo clusters of tungsten,
[(W(O)(tdmap)},0s] (180, tdmap = OC(CH2NMe,);) and
[{(W(O)(S-Phoz)},0¢] (181, S-Phoz = 2-(4',4'-dimethyloxazoline-
2'-yl)thiophenolate), are known in the literature.'***?*> The first
from a reaction of [W(O)(O'Pr),] with Htdmap in the presence of
water and the second by rearrangement of the complex
[W(CO)(C,Me,)(S-Phoz),] after oxidation using pyridine-N-
oxide.

One sulfide containing adamantane-type cluster [(WPMe,-
Ph),S¢] (182) exists, which rearranges from the tetranuclear
[Wa(p3-S)2(1-S)4Cl,(PMe,Ph)g] after reduction with a Na/Hg
amalgam in low yields."*

2.1.5.6 Group 7/16 adamantane-type clusters. All known
adamantane compounds with an elemental combination of
groups 7/16 are Mn clusters in the oxidation state IV, either with
oxygen or thiolates in the E position. The oxides are mainly
available via hydrolysis and can be derivatized by ligand or ion
exchange.

{Mn(TACN)},0,]*" (in 183-185) is the first example of such
an adamantane-type structure synthesized by addition of
simple Mn" salts to TACN in the presence of water and air to
oxidize the metal centers.'?>"'%°

The related adamantane [{Mn(bpea)},0¢](ClO,), (186, bpea
= N,N-bis(2-pyridylmethyl)ethylamine) also comprises of an
N,N,N-tridentate ligand and cannot be obtained by air oxida-
tion, but requires a comproportionation of two Mn compounds
Mn(ClO,4), and ["Bu,N][MnO,] and bpea.®** Addition of ["Bu,N]
Br yields the bromide salt [{Mn(bpea)},O4]Br 187, which can
subsequently be treated with alkaline metal salts for anion
exchange (188-192). Methylated bpea can also be used during
the synthesis to form derivatives (193-194). The same study also
investigated the single electron reduction of the compounds
under retention of the adamantane-type scaffold, either by
electrochemistry or via TACNMe as a reducing agent (195).

[Mn,O¢(bpea),](ClO,), can also be used as a basis for ligand
exchange using other tridentate ligands (196-200)."*° In the case
of the charged N-substituted iminodicarboxylate ligands, used
as their ammonium salts, only partial substitiution products in
the form of [{Mn(R-ida)},{Mn(bpea)},0s] (201-206, R-ida = N-
(R)iminodiacetate) could be isolated as stable compounds.

By a reaction of tame-3HOTf (tame = tert-amyl methyl ether),
Mn(OTf), and Et;N in MeCN and under exposure to athmo-
speric O,, the mixed oxo/hydroxo species [{Mn(tame)},Os(-
OH)|(OTf)5s (207) was obtained, which could be completely
deprotonated by additional Et;N, leading to 208."*° Protonation
of [{Mn(TACN)},O¢]** to the corresponding [{Mn(tame)},Os(-
OH)J’" (in 209) by HCIO, was also proven to work.

The last literature-known oxide cluster [Mn,O4(tphpn),](-
OTf),(Cl0O,); (210, Htphpn = N,N,N',N'-tetra-(2-methylpyridyl)-2-
hydroxypropanediamine, Fig. 8) features a Mn™/Mn"™ mixed
valency situation and a pentadentate ligand bridging two Mn
moieties by coordination with its N sites as well as the O atom in

© 2024 The Author(s). Published by the Royal Society of Chemistry
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the E position between the two metal centers.*** It is prepared by
a reductively induced isomerization of the double decker type
compound [{Mn,(u-O),(tphpn)},].

Thiolate complexes with Mn exhibiting adamantane-type
structure have also been studied. In the most simple case,
dianionic [(MnSPh),(SPh)e]>~ clusters (in 211-212) are isolated
after conversion of MnCl, with NaSPh and an appropriate
ammonium countercation.” Unlike the oxygen species, they
contain Mn" sites in their inorganic core.

In those compounds, all Mn atoms also carry a thiolate
ligand which can formally be substituted by halides by either
using [Et,N]Br during the synthesis to form the brominated
213,"* or through a rearrangement by adding MnCl, to [(Me,-
N)2{Mn,(S'Pr)e}], leading to [Me4N],((MnCl),(S'Pr)e] (214).** The
last method can also yield the corresponding selonlate [Me,-
NL[(MnBr),(Se'Pr)s] (215) when using MnBr, and [Me,N],[-
Mn,(Se'Pr')q] instead.

In [{Mn(BMAP)};(MnCl);]Cl (216, H,BMAP = 2-[bis(2-
mercaptoethyl)Jaminomethyl-pyridine), the BMAP ligands coor-
dinate to three of the Mn centers by their N atoms and also carry
two thiols each, which make up the atoms in the E position.**®
The last Mn atom is saturated by a chlorine atom. It forms when
adding H,BMAP to MnCl,.

2.1.5.7 Group 8/16 adamantane-type clusters. All but one
known compounds in this cluster family are iron compounds,
which mainly form oxo/hydroxo compounds with polydentate
ligands and Fe™ centers, but also Fe'' thiolate complexes
common for most transition metal groups.

A family of oxo/hydroxo clusters comprising heptadentate
ligands of the type [{Fe,(L)},04_,(OH),]? (in 217221, n = 2, 3,
Fig. 8) is obtainable from mostly basic conditions by providing
the desired ligand and simple iron salts."**** The ligands in
those systems bridge two Fe atoms by providing an O atom in
the E position between them and coordinating via three Lewis
basic sites to both of them. The charge of the resulting clusters
depends on the charge of the ligand and the O/OH ratio. For
[Fe,(N-Et-HPTB),0,][BF,], (222), obtained from bubbling O,
through a solution of [Fe,(N-Et-HPTB)(dmf),][BF,];, all of the
four E atoms not part of the organic ligand are oxo ligands.**

There is a distinctly different arrangement of bridging
ligands found in the hydroxo cluster [{Fe("BuOH)}4(dppoe)s(-
OH)][PFs],Cl, (223, dppoe = 1,2-bis(diphenylphosphine oxide)
ethane), in which the neutral ligands are not part of the ada-
mantane architechture." It was unintentionally found to be the
main product in a reaction of [(Cp)(dppe)FeCl] (dppe = 1,2-
bis(diphenylphosphino)ethane) with the carborane [closo-1,12-
C,B11H;(CN),] while in contact to air, oxidizing both the dppe
and iron atoms.

Clusters with the non bridging tridentate ligands TACN,
[{Fe(TACN)},0,(OH),JX, (224-225, X = I, CIO,), do also not
comprise oxygen atoms from the ligand in their scaffold and
were first obtained after the hydrolysis of [(TACN),Fe,(acac),(-
0)](ClO,), under addition of NaX,** although examples of
[{Fe(TACN)},0,_,(OH),)? (in 226-227, n = 2, 3) with different
halide counterions could later be synthesized directly from
[(TACN)FeCl;] with a sodium halide in basic solution.'*>**¢

Chem. Sci., 2024, 15, 9438-9509 | 9453
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Thiolate clusters of the form [(FeSR)4(SR)¢]>~ (in 228-230,
Fig. 8) and [(FeX)4(SR)s]*~ (231-232, X = Cl, Br) both exist. The
first type is generated by converting FeCl, using
thiosulfates™”**° and the second by adding the preformed thiol
complex [Ph,P],[Fe(SPh),] to FeX,."* [Et,N],[(FeBr),(SBn)s](233)
can also be prepared by the first method.**

[{Fe(BMAP)};(FeCl);]Cl (234) is isostructural to the Mn
congener 209 and prepared accordingly.™*

[(RuPPh;),Se] (235, Fig. 8) is a singular example, as it is
a pure sulfide cluster and the only Ru compound.** It can be
formed in reactions of a sulfide source like (SiMe3),S or NaSH
with PPh; and a Ru” complex like RuCl,(DMSO), resulting in H,
or (SiMejy), as reduced side products.

2.1.5.8 Group 9/16 adamantane-type clusters. There are only
a few adamantane-type structures comprising cobalt which are
known in the literature.

One, [Co4(HMPM),](ClO,), (236, H;HMPM = 2,6-bis[{{(1-
hydroxy-2-methylpropan-2-yl)(pyridine-2-ylmethyl)}amino}
methyl]-4-methylphenol, Fig. 8), is formed with two hepta-
dentate ligands, which encompass the six oxygen atoms in the E
position and coordinate terminally to the Co™ moieties with

View Article Online

Review

two N atoms per metal center.”** It is formed by combining the
deprotonated H;HMPM ligand and Co(ClO,),.

All other Co adamantane-type clusters are thiolates with
a Co™ core. Clusters of the form [{Co(SPh)},(SR)¢]*~ (in 237-
239) are obtained from the thiolates and common cobalt and
ammonium salts.**>*** The terminal thiolates can be formally
exchanged by halides, as seen in the compound [‘Bu,NJ,[{-
Co(CD)}4(SPh)s] (240) formed from [‘Bu,N][CoCl;(PPh;)] reacting
with PhSSiMe; and [Et,N],[{Co(Cl)}4(SPh)e] (241, Fig. 8), which
in turn forms in a solution of Na, PhSH, CoCl, and [Et,N]
Cl.155,156

A heterogenous substitution pattern is observed for
[{Co(C1)},(CoPPh;),(SPh)s] (242) and [{Co(Cl)},(CoPOPh;)(-
CoPPh;)(SPh)s] (243), which could both be isolated as the
products of the addition of PhSSiMe; to the complex [CoCl,(-
PPh;),], in the presence of O, in the second case.'*

2.1.5.9 Group 11/16 adamantane-type clusters. The second
largest family of compounds with group 16 elements in the E
position is the 11/16 combination. Most of them exist for the
elemental combination Cu and S, although some Ag examples
and clusters with different chalcogenides are known.

a) b) c)
Fe Fe
Mn S
(0] fe) ¢ -
{ / ¢ <
210 218 229
d) e) f)
Cl
P
R /7
\‘—Q—Li }S Co A / S ﬂ\,
}‘ '\‘4 T/+ \X 7 ” Y L
' : | T O o
, ¢ § 8 g =
/ (% . v / Vs _‘ k/‘.. <
7/
235 236 241

Fig. 8 Examples of adamantane-type compounds with group 7-9 elements in the Q-position and group 16 atoms in the E-position: [Mn4-
O4(tphpn),l(CF3S0O3),(ClO4)3 (210, top left (a)), (HPy)s[{Fe(HPhXCG)},O(OH)s] (218, top center (b)), [Et4NI>[(FeSPh)4(SPh)el (229, top right (c)),
[(RuPPhz)4Sg] (235, bottom left (d)), [Cos(HMPM),](ClO4), (236,bottom center (e)) and [Et4NI,[{Co(C1)}4(SPh)gl (241, bottom right (f). Hydrogen

atoms and counterions, if present, are omitted for clarity.
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Table 8 Adamantane-type compounds with group 7-9 elements in the Q-position and group 16 atoms in the E-position®

Compound Reagents/conditions Method

[{Mn(TACN)},04]Br; 50H, 5 (183) TACN, MnCl,, NaBr, 0,/H,O §125:126

[{Mn(TACN)},0¢](Cl0O,), (184) Mn(NO;),, Na,C,0,4, TACN, NaClO,, NaOH, O,/ §127-129
MeOH, H,0, 60 °C, 3 h or TACN,
[Mn,O4(bpea),](ClO,), (186)/MeCN, RT, 1 h

[{Mn(TACN)},06](OTf), (185) Mn(OTf),, TACN, O,/MeCN §t30

[{Mn(bpea)},06](ClO,), (186) Mn(ClO,),-6H,0, ["BuyN][MnO,4],/MeCN, RT, 1 ct
h

[{Mn(bpea)},O¢]Br, (187) ["Bu,N][Br], [Mn,04(bpea),](ClO,), (186)/MeCN, o't
RT, 24 h

[{Mn(bpea)},0¢]X, ((188-192, X = [BF,], OT, [{Mn(bpea)}40¢)4]Br4 (187), NaX or KX/H,O, RT o't

[PF¢], SCN, Bar')

[{Mn(4,4'-Me,bpea)},06](ClO,), (193) Mn(4,4'-Me,bpma), - 6H,0, [n-Bu,N][MnO,],/ ct
MeCN, RT, 1 h

[{Mn(5,5"-Me,bpea)},0¢](Cl10,), (184) Mn(5,5'-Me,bpma), - 6H,0, [n-Bu,N|[MnO,],/ cht
MeCN, RT, 1 h

[{Mn(bpea)},06](ClO,); (195) [Mn,04(bpea),](ClO,)s, ["BusN]CIO,/MeCN, N3t
THF, electrolysis (—0.1 V), 25 min

[{Mn(bpea)},06](X); (196-200, X = [BE,], OTY, TACNMe, [Mn,O¢(bpea),](X), (188-192)/MeCN, st

[PF¢], SCN, Bar') 5 min

[{Mn(dien)},{Mn(bpea)},06](Cl0Oy4), (201) [Mn,04(bpea),](ClO,), (186), dien/MeCN, RT, 3 Q'
h

[{Mn(Medien)},](ClO,), (202) [Mn4Og(bpea),](ClO,), (186), medien/MeCN, RT, Q'
45 min

[{Mn(R-ida)},{Mn(bpea)},0¢] (203-206, R = Me, [Mn,04(bpea),](ClO,), (186), [‘BuyN],[R-ida]/ Q™

Bn, ‘Bu, “Pe) MeCN, RT, 30 min

[{Mn(tame)},05(OH)](OTf)5 (207) tame-3HOTf, Mn(OTf), - MeCN, Et;N, O,/MeCN, st30
RT, 36 h

[{Mn(tame)},0¢](OTf), (208) [{Mn(tame)},05(OH)]- Q¥
(OTf)s[Mn,O4(bpea),](ClO,), (207), NEt;/MeCN

[{Mn(tame)},05(OH)](OTf)5 (209) [{Mn(TACN)},06](OTf), (185), HClO,/MeCN p°

[Mn40,4(tphpn),](CF3805),(Cl0y); (210) [{Mn,(p-O),(tphpn)},], [Mn((HB(3,5- S/K'*
Me,pz);),](ClO,4),/MeCN, RT, 10 min

[Et,N],[(MnSPh),(SPh)s] (211) MnCl,-4H,0, PhSNa, Et,NCl-H,0/MeOH, RT, ch?
40 min

[Me,N],[(MnSPh),(SPh),] (212) MnCl,-4H,0, PhSNa, Me,NCI/MeOH, RT, 40 ct?
min

[Et,N],[(MnBr),(SPh)s] (213) MnBr,, NaSPh, [Et,N]Br/MeCN, RT, 2 h ch

[Me,N],((MnCl),4(S'Pr)s] (214) [Me,N],(Mn,(S'Pr)g], MnCl,/MeCN, 35 °C, 5 h Je

[Me,N],((MnBr),(Se'Pr)q] (215) [Me,N],(Mn,(Se'Pr)s], MnBr,/MeCN, RT, 12 h 135

[{Mn(BMAP)};(MnCl);]Cl (216) H,BMAP, MnCl,/MeOH, 60 °C, 5 min K"

["Bu,N],[{Fe,(HXMeCG)},0,(0H),] (217) FeCls, ["Bu,N]Cl, NaOH, H;HMeXCG/H,0 K%

(HPy);[{Fe,(HPhXCG)},O(OH);] (218) Naz;H,HPhXCG, Py, Fe(NO;);/MeOH, RT, 1 K38
month

(enH,), s[Fe,O(OH);(hpdta),] (219) H;hpdta, Fe(NO;);, en, dma/H,0, 3 days K

[{Fe,(bpbp)},0,(OH),](ClO,), (220) Hbpbp, Fe(ClO,);/THF, H,0, RT, 2 days |

[(Fe,{(TACN)CH,},CHOH)O(OH)],[PF], (221) {(TACN)CH,},CHOH, FeCl;, NaOAc, NEt;, K K
[PF4)/'PrOH, 24-36 h

[Fe,(N-Et-HPTB),0,][BF,], (222) [Fe,(N-Et-HPTB)(dmf),][BF,]5, O,/DMF K'*

[{Fe(‘BuOH)}4(dppoe),(OH)|[PFs],Cl4 (223) [closo-1,12-C,B1H;0(CN),], [(Cp)(dppe)FeCl], e
[NH],[PF¢], ‘BuOH/THF, 66 °C, 18 h

[{Fe(TACN)},0,(OH),]X, (224-225, X = I, CIO,) NaX, [(TACN),Fe,(acac),(0)](Cl0,),/Me,CO, '
H,O0, 2 weeks

[{Fe(TACN)},O(OH)5](1),15 (226) [(TACN)FeCl;], KI/H,0, Py, 72 h D'

[{Fe(TACN)},0,(OH)]Br, (227) [(TACN)FeCl;], NaBr/H,0, 25 °C, pH = 10.28 D'e

[R4N],[(FeSPh),(SPh)s] (228-229, R = Me, Et) FeCl,, NaSPh, [R,N]Cl/MeOH clam1e8

[Me,N],[(FeSEt)4(SEt)s] (230) FeCl,, NaSEt, [Me,N|Br/MeOH, 2 h c'

[Ph,P],[(FeCl),(SPh)e] (231) FeCl,, [Ph,P],[Fe(SPh),]/MeCN, 30 min cr

[Ph,4P],[(FeBr)4(SPh)s] (232) FeBr,, [Ph,P],[Fe(SPh),]/MeCN, 30 min cr0

[Et,N],[(FeBr)4(SBn)e] (233) FeCl,, NaSBn, [Et,N]Br/MeCN ct!

[{Fe(BMAP)};(FeCl);]CI (234) H,BMAP, FeCl,-4H,0/MeOH, 60 °C, 5 min K

[(RuPPh;),Ss] (235) RuCl,(DMSO0),, PPH3, (SiMe3),S/THF, —50 °C c'»

[Co4(HMPM),](CIO4), (236) Co(ClO,),, HHMPM, Et;N/MeOH, RT K3

[Me,N],[{Co(SPh)}4(SPh)e] (237) PhSH, Et;N, Co(NO;),, [Me,N]CI/EtOH c

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 8 (Contd.)

Compound Reagents/conditions Method
[Cy,NH,],[{Co(SPh)}4(SPh)] (238) PhSH, Cy,NH, Co(NOs),, [Me,N]|CI/EtOH c
[Et,NL[{Co(SEt)}4(SEt)s] (239) NaSEt, CoCl,, [Et,N]Cl/MeCN c'®
[‘BusN],[{Co(Cl)}4(SPh)s] (240) [‘BuyN][CoCl5(PPhs)], PhSSiMes/toluene, 3 h c'®®
[Et,N],[{Co(CI)}4(SPh)e] (241) Na, PhSH, CoCl,, [Et,N]Cl/MeOH, RT c'e®
[{Co(C1)},(CoPPh3),(SPh)e] (242) [CoCl,(PPh;),], PhSSiMes/THF, 3 h c'®
[{Co(C1)},(CoPPh;)(CoPOPh;)(SPh)s] (243) [CoCl,(PPh;),], PhSSiMe;, O,/THF, 3 h c'

“ bpea = N,N-bis(2-pyridylmethyl)ethylamine, Bar'y = [3,5-(CF),C¢H;],B] ", dien = diethylenetriamine, medien = N'-methyldiethylenetriamine, R-
ida = N-(R)iminodiacetate, “Pe = cyclopentane, tame = tert-amyl methyl ether, Htphpn = N,N,N’,N'-tetra-(2-methylpyridyl)-2-
hydroxypropanediamine, pz = pyrazolyl, H,BMAP = 2-[bis(2-mercaptoethyl)Jaminomethyl]pyridine, Py = pyridine, HsHMeXCG = N,N'-(2-
hydroxy-5-methyl-1,3-xylylene)bis(N-(carboxymethyl)glycine), HsHPhXCG = N,N'-(2-hydroxy-5-phenyl-1,3-xylylene)bis(N-(carboxymethyl)glycine),
dma = N,N-dimethylacetamid, Hbpbp = 2,6-bis((N,N'-bis-(2-picolyl)amino)methyl)-4-tert-butylphenol, {(TACN)CH,},CHOH = 1,3-bis(1,4,7-triaza-
1-cyclononyl)-2-hydroxypropane, N-Et-HPTB = N,N,N,N'-tetrakis(2-(1-ethylbenzimidazolyl))-2-hydroxy-1,3-diaminopropane, dppoe = 1,2-
bis(diphenylphosphine oxide)ethane, dppe = 1,2-bis(diphenylphosphino)ethane, H;HMPM = 2,6-bis[{{(1-hydroxy-2-methylpropan-2-yl)(pyridine-

2-ylmethyl)}amino}methyl]-4-methylphenol.

Thiolate containing adamantane-type cluster anions of the
general composition [Cuy(SR)¢]*~ (in 244-255) have been
extensively studied, and can be obtained by reacting a copper
salt with the desired thiolate or by using a monomeric precursor
complex already containing the SR species in most cases.”>” %
In some cases, this involves a reduction of the copper atoms
from Cu" to Cu'.

Different synthetic approaches have also been showcased.
An interesting alternative synthesis route features the inversion
of Q and E positions during the transformation of the S/Cu
adamantane-type structure [(NEt,],[(SPh),(CuBr)s] (847, see
section 2.1.7) to the desired [Et,;N],[Cu,(SPh)s] (256) by addition
of [Et,N]SPh in DMF."”

The polymer (CuSCH,CH,OH),, decomposes and dissolves in
basic aqueous solutions to give the adamantane-type [("Bu),-
NJ,[Cu,(SCH,CH,0H)q] (257, Fig. 9).""*

An electrochemical synthesis route to the thiolate cluster
[Cu(BIK),],[Cu,{S(o-tolyl)}] (258, BIK = bis(2-methyl-imidazole-
2-yl)ketone) is also feasible using a Cu anode in an electrolyte
solution of BIK, the thiol HS(o-tolyl) and [*Bu,N]ClO, in
MeCN.'”>

Analogous reactions can also generate the selenium
congener [Me,N],[Cu,(SePh)s] (259),"”* while the only known Te
congener [‘BuzPH],[Cu,(TePh)s] (260) has been obtained from
a rearrangement of the cluster [(‘BuzP);(CuTePh),].1"*

There is however another tellurium containing adamantane-
type structure formally derived from this example. Unlike many
other adamantanes discussed here containing a piy-atom in the
center, this one features a p;-Cu atom. One six membered
(CuPEts);Te; ring of the adamantane-type scaffold in [Et;PPh]
[p3-Cu(CuPEt;);Cu(TePh)s] (261, Fig. 9) coordinates an addi-
tional Cu atom in its center opposite to a naked Cu atom in the
Q position, leading to a more planar arrangement of the six
membered ring.'”® Isolation was possible if Te(Ph)SiMe; was
used as a tellurolate source in a solution with CuCl and PEt;.

A related family of adamantane-type ions [Cu,(SRS);]*~ (in
262-274, Fig. 9) comprises bridging bis-thiolates in the E posi-
tion. This leads to two different copper sites: three copper

9456 | Chem. Sci, 2024, 15, 9438-9509

moieties are coordinated by two sulfur atoms of the same bis-
thiolate and one from another, while the last Cu atom is coor-
dinated by three different ligands.

Their synthesis normally follows the same patterns as has
been discussed for the monothiolates,"”***" although two
examples can be found that form by rearrangement of other
copper thiolate compounds.'7*'8>183

A purely inorganic S, bridge in place of a bis-thiolate could
also be observed in the compound [Ph,P],[Cu,(S4)s] (275),
prepared from a reaction of elemental sulfur, H,S and Cu(OAc),,
thus involving a reduction of the copper atoms.*®*

Utilizing neutral thiones in place of thiolates results in the
formation of cationic adamantanes of the type [Cuy(SCR,)s]**
(in 276-280, Fig. 9).'*'* This is achieved by addition of the
thione to simple copper salts, mostly nitrates or sulfates, in
common solvents. Depending on the concentrations and addi-
tives used, additional thione ligands can also coordinate to one
or multiple Cu sites in the cluster, expanding their coordination
number from three to four (281-283).'*>'°*'* When choosing
Cul as a precursor, such an addition of iodide is observed on all
copper atoms, resulting in neutral clusters [(Cul),(SR,)e] (284~
285).121% A Cl homolog [(CuCl){SC(NH,)NHCH,CH=CH,}]
(286) is observed in an electrochemical reaction at copper
electrodes in an electrolyte of CuCl,, HCl and SC(NH,)NHCH,-
CH=CH, in ethanol.***

Using linked phosphine sulfides or selenides (EPPh,),N™ (E
=S, Se) results in cluster cations [Cu,{(EPPh,),N};]" (in 287-
290) with the same architecture as described for linked
thiolates.'*>1%®

[Cuy(O;N,),](ClO,), (291, H;0;N, = 1-Me-4-OH-3,4-bis(CH,-
N(CH,CsH,N)(CMe,CH,0H)-CcH,) represents the only
example of a Cu" as well as a Cu/O cluster compound. The two
ligands deliver three oxygen atoms in the E position and addi-
tionally coordinate to two copper atoms each via four N moie-
ties, resulting in a heptadentate coordination.'® Despite the
differences, the reaction pathway is similar to the thiolate route
as the ligand is deprotonated before reaction with a simple
copper salt.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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While fewer examples for silver exist, they can generally be
seen as the simple heavier congeners of known Cu compounds.
[EtyN],[Ag4(SCeH,4-p-Cl)s] (292, Fig. 9) results from transferring
the chemistry of simple Cu thiolates to silver,’*® while [Ph,-
P],[Ag4{0-(SCH,),CeH,}3] (293) and ["Bu,N],[Ags(FcSe,)s] (294,
Fc = ferrocenyl) can be isolated when using a bis-thiolate or bis-
selenide respectively.>**>

Another silver thiolate could be found as the anion in an
intercluster compound [Et;N][Br@Agg(2-TBI);5(S04),][Ag4(2-
TBI)s(SO4)3]» (295, 2-TBI = 2-thiobenzimidadzol) together with
an octomeric cluster, in which it is additionally coordinated by
three sulfate ions. While the reactants are similar to those used
in other reactions leading to thiolate adamantanes, sol-
vothermal conditions and ultrasonic activation are used in this
case.”*

The only Te homolog in this compound family is found in
[Ph,P],[Ag4(C4H;STe)s] (296). The ligand of this cluster is made
by addition of elemental Te to thiophene in the presence of
"BuLi.?*

An oligoselenide-containing cluster ["Pr,N],[Ag,(Se.)s] (297,
Fig. 9) in analogy to the sulfide congener could also be obtained
after using Na,Ses as the selenide source.”**

View Article Online

Chemical Science

The nitrogen bridged phophine selenide [Ag.{(SePPh,),-
N};](OTf) (298) is another example of a silver compound that
can be prepared according to the synthesis used for its copper
homolog.>*

Lastly, a second selenone [(AgPPh;),(Mbis);](OTf), (299,
Mbis = 1,1-methylenebis(3-methylimidazoline-2-selone))
unique to the chemistry with silver results from the addition
of Mbis to [Ag(OTf)(PPh;)], which leads to an adamantane
featuring PPh; terminal ligands at the silver positions.>*

2.1.5.10 Group 12/16 adamantane-type clusters. This family
of compounds has been studied systematically in regards to the
influence of different ligands, elemental combinations and
counter ions. Most of the studies on Zn compounds could be
transferred to their cadmium and, unusually for period 6
elements, also to their Hg homologs. While the number of
compounds investigated is very high, the types of compounds
are not as diverse as for other combinations. With the exception
of two clusters, all of them feature chalcogenolate groups in the
E position. In the simplest case, this leads to anions of the type
[(MER)4(ER)¢]>~ (M = Zn, Cd; E = S, Se, 300-319, Fig. 10).

While the first such compounds were obtained from elec-
trolysis of metal anodes in basic thiol solutions,**”**® a simpler

a) b) c)
S
&
e ¥ “*C;’ T
L LS &ﬁ\ \
257 261 262
d) e) f)
Cu & . Ag Se
, _— Sg\AQV ] \\g_ — /
i g R
g/ ™~
L g = (S =
277 292 297

Fig. 9 Examples of adamantane-type compounds with group 11 in the Q-position and group 16 atoms in the E-position: [("Bu)4NI>[Cug(-

SCH>CH,O0H)g¢l (257, top left (a)), [EtsPPh]lus-Cu(CuPEts)sCu(TePh)g]

(261, top center (b)), [Ph4Pls[Cus{o-(SCH),CeH4ls] (262, top right (c)),
).

[Cua{SC(NH,)2}6l(SO4), (277, bottom left (d)), [EtsN]2[Ag4(SCeH4-p-Clgl (292, bottom center (e)) and ["PryNI,[Ag4(Ses)s] (297, bottom right (f)

Hydrogen atoms and counterions, if present, are omitted for clarity.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 9 Adamantane-type compounds with group 11 in the Q-position and group 16 atoms in the E-position®
Compound Reagents/conditions Method
[Me,N],[Cu,(SPh)e] (244) Cu(NOs), PhSH, "Bu;N, [Me,N|CI/EtOH, 75 °C cre7so
[Ph4P],[Cu,(SPh)s] (245) [Ph4P],[Cu(SPh);], [Cu(MeCN),]C10,/MeCN, 82 °C, 5 min 160,161
[Li(diglyme),],[Cu,(SPh)s] (246) CuN(SiMej,),, LiN(SiMe;),, HSPh/diglyme, 110 °C, 10 min c'e?
[Li(dme);],[Cu,(SPh)e] (247) CuN(SiMes3),, LiN(SiMes),, HSPh/DME, 84 °C, 10 min c'®
[Li(15-crown-5)thf],[Cu,(SPh)e] (248) CuN(SiMes),, LiN(SiMes),, HSPh, 15-crown-5/THF, slight heat, 5 min cte?
[Me,N],[Cu,(SMe)q] (249) [Me,N][CuCl,], NaSMe/EtOH, MeCN, 75 °C, 90 min C139163
["Pr,N],[Cu,(SMe)s] (250) Cu,0, ["Pr,N|Br, NaOMe/(CH,0OH),, MeOH, MeCN, 55 °C, 1 h c'e
[Ph4P,[Cu,(SEt)6] (251) Cu,0, EtSH, [Ph,P]Br, NaOMe/(CH,0H),, 55 °C c'®
[EtyN],[Cu,(SCeH,-p-Cl)g] (252) Cu(NO;),, HSCeH4-p-Cl, "BusN, [Et,N]|CI/EtOH, MeOH, clee

MeCN, 50 °C to 4 °C, 18 h
[EtsN]o[Cu,{S(o-BuCsH,)}¢] (253) CuCl, HS(0-'‘BuCeH,, NaH, [Et,N]Cl/DMF c'e’
[EtuN]o[Cu,(SPr)e] (254) CuCl, HS'Pr, NaH, [Et,N]|CI/THF, 24 h c'es
[K(Me,phen);],[Cu,(SBn)g] (255) CuCl, KSBn, Me,phen/THF c'®®
[Et,N],[Cu,(SPh)e] (256) [(NEt,]4[(SPh)4(CuBr)] (847), HSPh, Et;N/DMF, 15 min 170
[("Bu)4N],[Cu,(SCH,CH,OH)g] (257) (CuSCH,CH,0H),,, [("Bu),N]JOH/H,0 |
[Cu(BIK),],[Cus{S(o-tolyl)}s] (258) BIK, HS(o-tolyl), Cu anode, ["Bu,N]Cl0,/MeCN, electrolysis N'72
[Me,N],[Cuy(SePh)g] (259) CuCl, PhSeH, Et;N, [Me,N]Cl/DMF, MeOH c'3
[‘BuzPH],[Cu4(TePh)g] (260) [(‘BusP);(CuTePh),], Me;SiTePh, Me;GaOEt,/THF je
[Et;PPh][s-Cu(CuPEt;);Cu(TePh),] (261) PEt;, CuCl, Te(Ph)SiMe;/Pentane, RT, 18 h c'”
[Ph,4P],[Cus{0-(SCH,),CeHa}5] (262) Cu(NOs),, 0-(HSCH,),C¢H,, NEt;, [Ph,P|Br/EtOH, 5 h c'7®
[Ph4P],[Cu,(SCH,CH,S);] (263) CuCl, HSCH,CH,SH, NEt;, [Ph,P]Br/MeCN, 5 h cl771rs
[(Me;P),Cul,[Cu,(SCH,CH,S);] (264) [CuSCH,CH,SCu], PMes/PhMe, 90 °C, 1.5 h c'”?
[Ph,P],[Cu,{S(CH,);S}s] (265) HS(CH,);SH, Cu,0, [Ph,P]Br, NaOMe/(CH,OH),, MeOH, 55 °C, 1 h c'7®
[Me,N],[Cu,{S(CH,);S}5] (266) HS(CH,);SH, Cu,0, [Me,N]|Cl, NaOMe/MeCN, MeOH, 50 °C, 1 h c'7®
[Et,N],[Cus{S(CH,)sS}s] (267) HS(CH,);SH, Cu,0, [Et,N]Br, NaOMe/MeCN, MeOH, 50 °C, 45 min c'7®
[Et,N],[Cu,(SCH,CH,S);] (268) HSCH,CH,SH, Cu,0, [Et,N]JOH/MeCN, MeOH, 50 °C c'7®
[Me;NCH,Ph],[Cu,(SCH,CH,S);] (269) HSCH,CH,SH, Cu,0, [Me;NCH,Ph]Cl, NaOMe/glycerol, MeOH, 45 °C c'8
[Me,N],[Cuy(CsHeSs)5] (270) [Cu(MeCN),][PF,], CsHgSg, [Me,NJOH/THF, Me,CO, MeOH, 3 days c'8e
[Ph,P),[Cu,(tpdt);] (271) CuCly, 5,6-thieno[2,3-d]-1,3-dithiol-2-one, KOMe, [Ph,P|Br/MeOH, 1 h ct®
[Ph4P],[Cus(o-tpdt)s] (272) CuCl,, thieno[3,4-d]-1,3-dithiol-2-thione, KOMe, [Ph,P]Br/MeOH, 1 h c'st
[(Me;P),Cu][Cu,(SCH,CH,S);(CuPPh,)] (273) [(Me;P),Cul,[Cu,(SCH,CH,S);]/THF 179

K[Ph,P][Cuy(‘Bu,DED),] (274) K,4[Cug(‘Bu,DED)g], [Ph,P]Cl, S/Me,CO, EtOH 182,183

[Ph,P,[Cuy(S4)s] (275) S, H,S, Cu(MeCO,),, [Ph,P]Br, NH;/MeCN c'#
[Cu.{SC(NH,),}](NOs), (276) CuNO;, SC(NH,), HNOs/H,0 c'®
[Cu{SC(NH,),}6](SO4), (277) CuS0,, SC(NH,),, HOAc/H,0, 80° c'se
[Cu.{SC(NH,),}¢](HSO,),S0, (278) CuS0,, SC(NH,),, H,S0,/H,0, 80 °C C186:187
[Cuy(HapymtH)s](ClO,), (279) [Cu(C,H,)ClO,], HypymtH, C,H,/MeOH c'®®
[Cu,{SC(NH,)NHCH,CH=CH,}¢](OTf), (280) Cu(OTf),, SC(NH,)NHCH,CH=CH,/CsHg, 20 min c'®?
[{CuSC(NH,),}sCu{SC(NH,),}6](NO;), (281) CuNOj3, SC(NH,),, HNO3/H,0 c'®
[{CuSC(NH,),}Cus{SC(NH,),}6](SO,). (282) CuS0,, SC(NH,),, H,S0,/H,0 c'
[{CuSC(NH,),}(CuNO;)Cu,{SC(NH,),}6](SO4)(NO;) (283) Cu(NO;),, SC(NH,),/H,0, 80 °C to 5 °C, 5 days ct
[(Cul),{SC(NH,)NHEL}] (284) Cul, SC(NH,)NHEt/EtOH, 50 °C, 3 h c'?
[(Cul),{SC(NH,),}¢] (285) Cul, SC(NH,),, KI/H,0, 80 °C c'?
[(CuCl),{SC(NH,)NHCH,CH=CH,}] (286) CuCl,, Cu electrode, SC(NH,)NHCH,CH=CH,, HCI/EtOH, 0.2 V, 0.13 mA N4
[Cu4{(SPPh,),N};][Cu'Cl,] (287) 1. NaN(SPPhy,),, CuClL,/H,0 Jroo19e

2. CCly, CH,Cl,
[Cu,{(SPPh,),N};][BF,] (288) [Cu(MeCN),][BF,], (SPPh,),NH/CH,Cl, 1 h c'”
[Cua{(SPPh,),N};]L; (289) Cu, (SPPh,),NH-1I,/Et,0, 2 days c'o®
[Cu4{(SePPh,),N};][BF,] (290) [Cu(MeCN),][BE,], (SePPh,),NH/CH,Cl, 1 h c'’
[Cu,(05N,),](ClO,), (291) Cu(ClOy),, H;0;N,, Et;N/MeOH c'?
[Et,N],[Ag4(SCeH,4p-Cl)e] (292) AgNOs, HSCeH,-p-Cl, "BusN, [Et,N]CI/EtOH, MeOH, MeCN, 50 °C to 4 °C, 18 h C'*°
[Ph,P],[Ag,{0-(SCH,),CsH,}5] (293) AgNO;, Na,0-(SCH,),CgH,, [Ph4P]Br/MeOH, 5 h c2°
["BuyN],[Ag4(FcSe,)s] (294) AgCl, Fc(SeSiMe;),, ["BuyN]Br/THF c*
[Et,N][Br@Ags(2-TBI);5(SO4),][Ag4(2-TB)s(SO4)3], (295)  Ag,SO4, 2-TBI, [Et,N]Br/MeCN, DMF, sonification, 120 °C, 2 days B/L**
[Ph,P],[Ag,(C4H;STe)s] (296) 1. Te, [Ph,P]Br, thiophene, "BuLi/THF c*”

2. AgNO;/DMF
["Pr,;N],[Ag,(Ses)s] (297) AgNO;, Na,Ses, ["Pr,;N]Cl/DMF c*
[Ag4{(SePPh,),N};](OTf) (298) Ag(OTY), K{(SePPh,),N}/CH,Cl,, 30 min c*
[(AgPPh;),(Mbis);](OTf), (299) [Ag(OTf)(PPhs)], Mbis/Me,CO, 1 h c*°

% Me,phen =

2,9-dimethyl-1,10-phenanthroline, BIK =

bis(2-methyl-imidazole-2-yl)ketone, ‘Bu,DED =

1,1-dicarbo-tert-butoxy-2,2-

ethylenedithiolate, tpdt = 3,4-thiophenedithiolate, a-tpdt = 2,3-thiophenedithiolate, H,pymtH = 3,4,5,6-tetrahydropyrimidine-2-thione, H;O3N,

= 1-Me-4-OH-3,4-bis(CH,N(CH,CsH,N)(CMe,CH,0H)-C¢H,, Fc = ferrocenyl, 2-TBI = 2-thiobenzimidadzol,

methylimidazoline-2-selone).

9458 | Chem. Sci, 2024, 15, 9438-9509

Mbis = 1,1’-methylenebis(3-
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Fig. 10 Examples of adamantane-type compounds with group 12 in the Q-position and group 16 atoms in the E-position: [EtsNHI,[(-
ZnSPh)4(SPh)g] (300, top left (a)), [MesNIL[(CdBr)4(SPh)e] (412, top center (b)), [(HgPPhs),(HgBr)»(Te®Py)e] (450, top right (c)), [Cd(CdPPhs),(S'Pr)e]
[ClO4]; (464, bottom left (d)), [2.2.2]-cryptH,[(Zn])4(MeQ)¢] (465, bottom center (e)) and [Zn4(POPYH)sCl] (466, bottom right (f)). Hydrogen atoms

and counterions, if present, are omitted for clarity.

method involving reactions between chalcogenolate solutions
and simple non-halide metal salts at mostly room temperature
has subsequently been used.'*2°->??

In solution, Cd clusters can exchange chalcogenolates,
including partial substitution with tellurium, to form mixed
compounds [Cd,(ER),(E'R)1_,]>~ (in 320-368) by reacting
them with R,E',, or in equilibrium reactions with other similar
clusters.””* The latter strategy also works to form the mixed
metal compound [Me,N][Cd,Zn,_,(SPh);,] (369-371).

By utilizing a zwitter-ionic thiolate 4-(trimethylammonio)
benzenethiolate (Tab), the cationic adamantane in [(MTab),(-
Tab)g|[PFs]s (372-373, M = Zn, Cd) can be isolated by the above
described method.**

The terminal chalcogenolates can be formally replaced by
halides (374-433, Fig. 10). This can be done by ligand exchange
reactions with PhICl,, Br, or I,,>**** or during cluster formation
by using halide salts, which can also be used to stabilize Hg
clusters including rare examples of Hg,Te, scaffolds.>*>>*°

As described for the pure chalcogenolate clusters, mixed
metal adamantanes [Et,N],[(MI),(M'T);_,(S"Pr)¢] (434-442, M =
Zn, Cd, Hg, Fig. 10) can be obtained by exchange reactions
between homometallic congeners.

© 2024 The Author(s). Published by the Royal Society of Chemistry

Asymmetric substitution at the terminal position is possible
as well. Depending on the ratio and chalcogenide used, anions
of the type [(MX),(SR)s_n(SR)e]’~ (443-447, M = Zn, Cd; X = ClI,
Br) can be isolated.”****'?** Trying to obtain the Hgl/SePh
compound with a [(Ph;P),N]" countercation resulted in
a charge reduced anion [Hg(HgI);(SePh)s]™ (in 448) with one Hg
site not carrying any ligand.**

To reduce the negative charge of the cluster compounds,
replacement of the terminal anionic ligands used previously
with neutral lewis basic ligands like phosphines or arsines was
necessary. With mercury, the neutral compounds [(HgPPhj),(-
HgX),(Te’Py)s] (449-451, X = Cl, Br, I; °Py = ortho-pyridyl) and
[(HgPPhj;),(HgSePh),(SePh)s] (452) with mixed terminal ligands
were obtainable when using halide or acetate mercury
salts.>**»** A complex precursor [M(L),(ClO,4),] (M = Cd, Hg; L =
PPh;, PEt;, AsPh;) in combination with M(ER), (E = S, Se) and
free L leads to cationic clusters in [(ML),(ER)e][ClO,], (453-464,
Fig. 10).>**>* With certain L and R combinations, this can lead
to clusters with a few terminally uncoordinated M sites, which
do not, however, influence the charge.

There are only two examples with oxygen in the E position.
One, the methanolate cluster [2.2.2]-cryptH,[(ZnI),(MeO)e] (465,

235
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Table 10 Adamantane-type compounds with group 12 in the Q-position and group 16 atoms in the E-position®

Compound Reagents/conditions Method

[Et;NH],[(ZnSPh),(SPh)s] (300) HSPh, Zn anode, Et;N, [Et,N]ClO,/MeCN, N,C2077209
electrolysis or NaSPh, ZnCl, [Et;NH]|C]/MeOH,
0 °C, 90 min

[Me,N],[(ZnSPh),(SPh)s] (301) HSPh, Zn(NO3),, Et;N, [*Pr,N]|Cl/MeOH, Me,CO, c*
3 days

(DAMS),[(ZnSPh),(SPh)] (302) HSPh, Zn(NOs),, Et;N, (DAMS)I/MeOH c*

[Ru(2,2'-bipy);][(ZnSPh)4(SPh)s] (303) Cd(SPh),, SC(NH,),, [Ru(2,2'-bipy);Cl,]/MeCN, B*'?
H,O0, 85 °C, 10 days

[EtyN],[(ZnSBn),(SBn)s] (304) BnSH, NaOMe, Zn(NOj3),, [Et,;N],Cl/MeOH, 2 h c

[Ph,4PL,[(ZnSBn),(SBn)s] (305) BnSH, NaOMe, Zn(NOs),, [Ph,P],Cl/MeOH, 2 h c3

[Et;NH][Me,N][(ZnSCeH,-4-Cl)4(SCsH 4-4-Cl)s ] HSCgH4-4-Cl, Et;N, Zn(NO;), [Me4N]Cl/MeOH, c?”

(306) 0 °C, 30 min

[Me N],[(ZnSCeH4-4-Cl),(SCH4-4-Cl)g] (307) HSC¢H,4-4-Cl, NaOH, ZnCl, [Me,N]Cl/MeOH, 0 ° (ond
C,2h

[EtsNH][(ZnSCeH4-4-Cl)4(SC¢H4-4-Cl)6] (308) HSCeH,-4-Cl, Et;N, Zn(NO;), [Et;NH]Cl/MeOH, c2%
0 °C, 30 min

[Me,N],[(ZnSePh),(SePh)s] (309) Na, HSePh, Zn(NO,),, Et;N, ["Pry;N]CI/H,0, cr1an1s
MeOH, MeCN, 60 °C

[Et;NH][(CdSPh),(SPh),] (310) HSPh, Cd anode, Et;N, [Et,N]CIO,/MeCN, N208
electrolysis

[Me,N],[(CdSPh),(SPh)e] (311) HSPh, Cd(NO3),, Et;N, [Me,N]Cl/MeOH c*e

[Et,N],[(CdSPh),(SPh)e] (312) HSPh, CdCl,, Et;N/MeOH, H,0 8217

(DAMS),[(CdSPh),(SPh)s] (313) (DAMS)I, PhSH, Et;N, Cd(SCN),,/MeOH, 10 min c*e

[M(phen);][(CdSPh),(SPh)s] (314-316, M = Ru, [Me,N][(CdSPh),(SPh)e] (311), M(phen);Cl,/ o

Fe, Ni) MeCN, 30 min

[Et,N],[(CdSCy)4(SCy)e] (317) NaSCy, CdCl,, [Et;N]|CI/EtOH, MeCN c*°

[Et;NH],[(CdSCeH4-4-Me),(SCeH4-4-Me),] (318) Cd[ClO,],, SCeH4-4-Me, Et;N, [Me,N]Cl/MeOH, c*
1h

[Me,N][(CdSePh),(SePh)s] (319) NaSePh, Cd(NO3),, [Me,N]Cl/MeOH, H,0, 122
MeCN, 80 °C

[Me,N][Cd4(SPh);o_,(SMe),] (320-322, n = 8-10) [Me,N][(CdSPh),(SPh)e] (311), Me,S,/Me,CO 222

[Me,N][Cd4(SPh);o_(S"Bu),] (323-329, n = 4- [Me,N][(CdSPh),(SPh),] (311), "Bu,S,/Me,CO Q**?

10)

[Me,N][Cd4(SPh);0_,(SBN),] (330-333, n = 7-10) [Me,N][(CdSPh),(SPh),] (311), Bn,S,/Me,CO 222

[Me,N][Cd4(SPh);o_.{S(2-CsH Me)},,] (334-344, [Me,N][(CdSPh),(SPh)g] (311), (2-C¢H,Me),S,/ Q**

n = 0-10) Me,CO

[Me,N][Cd,(SePh);o_,(S"Bu),] (345-350, n = 5- [Me,N][(CdSePh),(SPh)e] (319), "Bu,S,/Me,CO R**

10)

[Me,N][Cd4(SPh),¢_,(TePh),] (351-353, n = 8- [Me,N][(CdSPh),(SPh)] (311), Ph,Te,/Me,CO R**

10)

[Me,N][Cd,(SePh),o_,(TePh),] (354-357, n = 7- [Me,N][(CdSePh),(SePh)s] (319), Ph,Te,/Me,CO R**

10)

[Me,N][Cd4(SPh),_,(SePh),] (358-368, n = 0- [Me,N][(CdSPh),(SPh),] (311), [Me,N] R**

10) [(CdSePh),(SePh)g)/

[Me,N][Cd,Zn,_,(SPh)y0] (369-371, n = 2-4) [Me,N][(CdSPh),(SPh)e] (311), R**
[Me,N],[(ZnSPh),(SPh)s]/Me,CO

[(MTab),(Tab)s][PFs]s (372-373, M = Zn, Cd) TabH[PF,], M(OAc),/MeCN, DMF, MeOH, 70 °C, c*?3
1h

[MesNL[(ZnCl)4(SPh)e] (374) [Me,N1,[(ZnSPh),(SPh)e] (301), PhICl,/MeCN, 10 QX142
min

[Me,N],[(ZnBr),(SPh)s] (375) [Me,N],[(ZnSPh),(SPh)s] (301), Br,/CCly, Me,CO, Q122
10 min

[Me,N],[(ZnI),(SPh)c] (376) [Me,N],[(ZnSPh),(SPh)s] (301), I,/Me,CO 214,224

["BugN1,[(ZnI)4(S"Pr)s] (377) . Zn(S"Pr),, Znl,, ["BuyN|I/CH,Cl, c*

[Et4N],[(MX),4(SR)s] (378-406, R/M/X = 'Pr/Zn/Cl, MX,, [Et,N]X, M(SR),/CH,Cl,, 1 h c*?®

Br, I; 'Pr/Cd/Cl, Br, I; Me/Zn/Br, I; "Pr/Zn/I; "Bu/

Zn/T; "Bu/Cd/1, Et/Zn/Cl, Br, I; Et/Cd/C], Br, I, Bn/

Zn/Cl, Br, I; Bn/Cd/Cl, Br, 1, **Bu/Zn/Cl, Br, I;

*¢“Bu/Cd/Cl, Br, I)

[Me,N1,[(ZnCl),(SePh)s] (407) [Me,N],[(ZnSePh),(SePh)s] (309), PhICl,/MeCN, QM
10 min

[Me,NT,[(CdCl)4(SPh)e] (408) [Me,N],[(CdSPh),(SPh)s] (309), PhICl,/MeCN, 10 QM

9460 | Chem. Sci, 2024, 15, 9438-9509
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Compound Reagents/conditions Method

[R4N],[(CdCl),4(SePh)s] (409-410, R = "Pr, "Bu) CdCl,, (cat)Cl, Cd(SPh),/CH,Cl,, 1 h 227228

["PrsPH],[(CACl),(SeFc)q] (411) "Pr;P, CdCl,, Me;SiSeFc/THF, 10 min c*

[Me,N],[(CdBr),(SPh)s] (412) [Me,N],[(CdSPh),(SPh)s] (311), Br,/CCl,, QM
Me,CO, 10 min

[Me,N],[(CdI),(SPh)e] (413) [Me,N],[(CdSPh),(SPh)s] (311), I,/Me,CO 14

(DAMS),[(CdI),(SPh)e] (414) (DAMS)I, PhSH, Et;N, Cd(NOj;),,/MeOH, 10 min c*8

[Et,N],[(Cd1),4(S"Pr)e] (415) Cdl,, [Et,N]L, Cd(S"Pr),/CH,Cl, c*

[Me,N],[(CdCl),(SePh)e] (416) [Me,N],[(CdSePh),(SePh)s] (319), PhICl,/MeCN, QM
10 min

[Me,N],[(CdBr)4(SePh)s] (417) [Me,N],[(CdSePh),(SePh)s] (319), Br,/CCly, Q™
Me,CO, 10 min

[Me,N],[(CdI)4(SePh)e] (418) [Me,N],[(CdSePh),(SePh)s] (319), I,/Me,CO 214

[Et,N],[(HgX)4(S"Pr)s] (419-421, X = C, Br, I) HgX,, [Et;N]X, Hg(S"Pr),/CH,Cl, c*»

[Et,N],[(HgX)4(SePh)s] (422-424, X = Cl, Br, 1) HgX,, [Et,N]X, Hg(SePh),/CH,Cl, c*

[Mg(CH,{P(O)Pha},);][(HgX)s(SePh)s] (425-427, Hg(SePh),, MgX,, CH,{P(O)Ph,},/DMF, 1 h e

X = Cl, Br, I)

[M(CH,{P(O)Ph,},);][(HgBr),(SePh)e] (428- Hg(SePh),, MBr,, CH,{P(O)Ph,},/DMF, 1 h c*

430, M = Fe, Co, Ni)

[Et,N]o[(HgX)4(TePh),] (431-433, X = Cl, Br, 1) HgX,, [Et,N]X, Hg(TePh),/CH,Cl,, 30 min c»

[Et,N],[(CdI),(ZnI);_,(S"Pr)s] (434-436, n = 1-3) [Et,N],[(CdI)4(S"Pr)e] (415), R**®
["BuyN],[(ZnI),(S"Pr)s] (377)/CH,Cl,

[EtNLL[(HgI),(CdI)y—n(S"Pr)e] (437-439, n = 1-3) [Et.N][(HgI)s(S"Pr)e] (421), R*?®
[EtyN],[(CdI)4(S"Pr)s] (415)/CH,Cl,

[Et,N],[(HgD),(ZnI),_,(S"Pr)] (440-442, n = 1-3) [Et,N],[(Hgl)4(S"Pr)s] (421), R**®
6 Bu4N] [(ZnD)4(S"Pr)6] (377)/CH,CI,

[Me,N],[(ZnSPh),(ZnX),(SPh),] (443-444, X = Cl, HSPh, Zn(NO,),, Et;N, [Me,N]X/MeOH, Me,CO, c*°

Br) 10 days

[Me,4N],[(ZnSPh);(ZnCl)(SPh)s] (445) HSPh, Zn(NO;),, Et;N, [*Pr,N]Cl/MeOH, Me,CO, c°
10 days

[Et;NH],[(CACl)3(p-"Bu-CeH,SCd)(p-"Bu-CeH,S)6) p-"Bu-C¢H,SH, Et;N, CdCl,/MeOH, 19.5 h c*t

(a46)

[Me,N],[(CdSPh);(CdCI)(SPh),] (447) HSPh, Cd(NOs),, NEt;, [Me,N]Cl/MeOH, 1 h c*?

[(Ph3P),N],[Hg(Hgl);(SePh),] (448) Hgl,, [(Ph;P),N]I, Hg(SePh),/CH,Cl, c*»

[(HgPPh;),(HgX),(Te Py)s] (449-451, X = Cl, Br, °Py,Te,, Li{BH,4], Hg(OAc),, HgX,, PPh;/DMF, c*33

1) EtOH, THF, 2 h

[(HgPPh;),(HgSePh),(SePh)e] (452) HgBr,, PPh;, HSePh, Et;N/MeCN, 3 days c*

[(CdPPh;),(SPh)6][ClO4], (453) [Cd(PPh;),(ClO,),], Cd(SPh),, PPhs/CH,Cl,, 20 c*®
min

[(CdPPh;),(SePh)e][ClO,4], (454) [Cd(PPh;),(ClO,),], Cd(SePh),, PPhs/CH,Cl,, 20 c*®
min

[(HgPPh;),4(EPh)6][ClO,], (455-456, E = S, Se) [Hg(PPh;),(ClO,),], Hg(EPh),, PPh;/CHCl, 10 236237
min

[(HgPPh;),(SMe)6][ClO,4], (457) [Hg(PPh;),(ClO,),], Hg(SMe),, PPh;/CHCl;, 10 c»e
min

[(HgPPh3)4(SEt)6][ClO,4], (458) [Hg(PPh;),(ClO,),], Hg(SEt),, PPh;/CH,Cl,, 10 c*®
min

[(HgAsPh;),(SPh)e][ClO,], (459) [Hg(AsPh;),(ClO,),], Hg(SPh),, AsPhs/CHCl;, 10 ce
min

[(HgPEt;)4(SPh)6][ClO,4], (460) [Hg(PEt;),(ClO,),], Hg(SPh),, PEt;/Me,CO c»®

[(HgPEt;)4(SePh)][ClO,], (461) [Hg(PEt;),(ClO,),], Hg(SePh),, PEts/CHCl;, 10 c*e
min

[Cd(CdPPh;);(S™Pr)6][ClO,], (462) [Cd(PPh;),(ClO,),], Cd(S"Pr),, PPh;/CH,Cl,, 20 c233
min

[Cd,(CdPPh;),(SR)6][C1O, ], (463-464, R = Cy, [Cd(PPh;),(ClO,),], Cd(SR),, PPh;/CH,Cl,, 20 c*®

'Pr) min

[2.2.2]-cryptH,[(ZnI),(MeO)s] (465) [2.2.2]-crypt, ZnI,/MeOH, 1 day c*38

[Zn,(POPYH);Cl] (466) POPYH,, Et;N, ZnCl,/MeCN, 70 °C, 3 h K>

“ DAMS = trans-4-(4-dimethylamino-styryl)-N-methyl-pyridinium, bipy = bipyridine, "Pr = normal propyl, ***Bu = secondary butyl, phen = 1,10-
phenanthroline, °Py = ortho-pyridyl, Tab = 4-(trimethylammonio)benzenethiolate, [2.2.2]-crypt = 4,7,13,16,21,24-Hexaoxa-1,10-diazabicyclo
[8.8.8]hexacosane, POPYH, = N,N’-bis(2-hydroxyphenyl)-pyridine-2,6-dicarboxamide.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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[2.2.2]-crypt = 4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]
hexacosane, Fig. 10) is obtained in a simple reaction of ZnI,
and [2.2.2]-crypt in MeOH in which the cryptand acts as
a base.*®

The other example, [Zn,(POPYH);Cl] (466, POPYH, = N,N'-
bis(2-hydroxyphenyl)-pyridine-2,6-dicarboxamide, Fig. 10)
formed by the partially deprotonated multidentate ligand
coordinating to ZnCl,, and comprises two different Zn sites.”*®
Three are coordinated by two oxygen and two nitrogen atoms of
one ligand and one oxygen of another, while the last connects to
three different ligands via their oxygen atoms and carries an
additional terminal Cl ligand.

2.1.5.11 Group 13/16 adamantane-type clusters. Some group
13 examples with Al, Ga and In are known, although no exam-
ples with Te have been observed so far. The simplest examples
of group 13/16 adamantane-type structures are [Q4E,]®~ (467-
469, Fig. 11) anionic clusters, which were the first to be realized
for Ga/S, In/S and In/Se from the binary Q,E; and K,E in
water.>*® The only other example of such clusters is [Hydap]4[-
Ga,Seyq] (470, dap = 1,2-diaminopropane), also synthesized in
aqueous solution, but directly from the elements and dap in
solvothermal conditions.**!

Derivatization of the cluster archetype by protonation of the
terminal sulfur atoms was presented for two compounds
[(InSH),Se¢]*~ (in 471-472) with ammonium counterions,
prepared by Method B.>*>*** The addition of a larger fragment
was reached in {[Ni(tepa)],SO,}[Ni(tepa)(GaSH),Ss] (473, tepa =
tetraethylenepentamine), which additionally comprises of a Ni
complex coordinated by the cluster, obtained solvothermally
from NiS, Ga and tepa.”*

Formally substituting the terminal chalcogenides by neutral
amine ligands yields neutral compounds [(QNR;),Se¢]. A
condensation of Me;N-AlH; and (SiMe;),S forms the Al
congener [(AINMes),Se] (474),>** while a Ga cluster [(GaNHj3),Se]
(475) is isolated after the solvethermal reaction of Ga, S and
[NMe,4]CI in hydrazine hydrate.?** A compound with a slightly
larger ligand [(4-Me,N-CsH,NGa),Se] (476) could be achieved in
a two step synthesis via an intermediate [(4-Me,N-C5;H,N)

View Article Online

Review

GaSH, 4Cly 36] formed by (SiMe;),S and the ligand decorated
GaHCl, species, which can then be converted to the target
compound by an additional ligand.***

Another way to achieve neutral clusters is the partial func-
tionalization of the chalcogenides in the E position observed in
[(MI),(SMe),S,] (477-478, M = Al, Ga), prepared by solid state
reactions from binary or elemental compounds.>****’

Hydroxo clusters of indium [(TACNIn),(OH)s]*" (479-480)
were the first oxygen species reported, synthesized at room
temperature by InCl; and TACN in basic aqueous solution in the
presence of different counterions.>*®

By utilizing a formally negative ligand, the charge reduced
dication [(BuGa),(OH)s][CHB;;BrsMes] (481) with a carborane
counterion was obtained from hydrolysis of a low coordinate Ga
complex.**®

Another cluster type counterion is observed in [{(MesSi)s-
Si},Ga,O(OH);][{(CO);sFe}s{GaSi(SiMe;);},{GaFe(CO),}]  (482),
which comprises a central Ga,O(OH); adamantane-type struc-
ture with mixed E sites decorated by hypersilyl groups
(Si(SiMej3);) leading to a monocationic cluster.>* It is formed by
a rearrangement of [(Me;Si);SiGaCl], in the presence of Na,-
Fe(CO),-2 dioxane and NaOH.

Mixed oxo and hydroxo clusters [{(Me;Si);CM},0,(OH),]
(483-484, M = Al, Ga) can also be isolated as neutral
compounds from the stepwise hydrolysis of a precursor
complex [(Me;Si);CMMe,], albeit in low yields.>*

A pentadentate ligand was used to create a dianionic
compound, [enH,]|[Al;(OH),(hpdta),] (485, en = ethane-1,2-
diamine, Fig. 11), in which the hpdta ligands each use one
oxygen moiety as a p-bridging site in the E position while
coordinating with the two N atoms and the other four oxygen
positions to the Al atoms.” The cluster was isolated after
a simple condensation reaction between AICl; and the quintu-
ply protonated ligand Hshpdta in ethane-1,2-diamine.

Lastly, a single oxo centered cluster [(p,-O}(Me;Si);CIn},(-
OH),] (486, Fig. 11) is synthesized by reacting the In complex
Li[Me;SiInCl;] with Li[AlH,] to obtain a cyclic Li/In hydride

a) b) c)
N si
*,G’a:\ S i AI+ \% In
\
= ey
467 485 486

Fig. 11 Examples of adamantane-type compounds with group 13 elements in the Q-position and group 16 atoms in the E-position: KglGasS10]

(467, left (a)), [enHl[AlL(OH)4(hpdta),] (485, center (b)) and [(p4-
present, are omitted for clarity.
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O){(Me3Si)3CIn}4(OH)gl (486, right (c)). Hydrogen atoms and counterions, if
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Table 11 Adamantane-type compounds with group 13 elements in the Q-position and group 16 atoms in the E-position®

Compound Reagents/conditions Method
Kg[Ga,S10] (467) Ga,S;, K,S/H,0, 90 °C, 4 h cx0
Kg[In,S10] (468) In,S;, K,S/H,0, 90 °C, 4 h c*
Kg[In,Seq0] (469) In,Se;, K,S/H,0, 90 °C, 4 h cx0
[Hydapla[Ga,Seso] (470) Ga, Se, dap, H,0/170 °C, 5 days B>
[(C3H;),NH,],[(InSH),S¢] (471) In, S, dipropylamine/180 °C, 5 days B**
[NHMe;],[(InSH),Ss] (472) In, S, NMe,/EtOH, 140 °C, 5 days B>*
{[Ni(tepa)],SO.}[Ni(tepa)(GaSH),Ss] (473) Ga, NiS, tepa/H,0, 180 °C, 7 days B>
[(AINMe,),Se] (474) Me;N-AlH;, (SiMes),S/toluene, 110 °C, 5 days p**
[(GaNH;3),Se] (475) Ga, S, [NMe4]Cl, urea/N,H,-H,0, 180 °C, 8 days B
[(4-Me,N-C5H,NGa),Se] (476) 1. (4-Me,N-CsH,N)GaHCL, (SiMe;),S/MeCN, D*®
—25°C to RT, 29 h
2. 4-Me,N-CsH,N/MeCN, 82 °C, 8 h
[(Al1)4(SMe),S,] (477) 1. Ga, Gals, All3/200 °C A
2. Me,S,/110 °C
[(Gal)4(SMe),S,] (478) Me,S,, Ga,ly/110 °C A*1®
[(TACNIn),(OH)s](Cl0O,)s (479) InBr;, NaOH, NaClO,, TACN/H,0, 12 h c*8
[(TACNIn),(OH)](S,06); (480) InBr;, NaOH, NaS,0g, TACN/H,0, 12 h c248
[(BuGa)4(OH)s][CHB,Br¢Mes] (481) [2,6-(2,6-Mes,CeH3),CsH;Ga"Bu] |
[CHB,;BrgMe;], H,0/CeDg, 16 h
[{(Me;Si);Si},Ga,O(0H)s] [(Me;Si);SiGacCl],, Na,Fe(CO),-2 dioxane, 70
[{(CO)sFe};{GaSi(SiMes)s},{GaFe(CO),}] (482) NaOH/Et,O
[{(Me;Si);CAl},0,(0OH),] (483) 1. AlMe,Cl, [(Me;Si);CLi-2 thf]/THF, hexane, 15 !
h
2. H,O/THF, —10°C, 1 h
[{(Me;Si);CGa},0,(0H),] (484) 1. GaMe,Cl, [(Me;Si);CLi- 2 thf]/THF, hexane, 15 !
h
2. H,O/THF, 24 h, 150 °C, 4 h
[enH,][Aly(OH),(hpdta),] (485) H;hpdta, AlCl;, en/H,0 K0
[(14-O){(Me;Si);CIn}4(OH),] (486) 1. InCl;, (Me;Si);CLi/THF, —40 °C

2. LiAlH,/THF, —78 °C
3. MeOH, H,0

¢ dap = 1,2-diaminopropane, tepa = tetraethylenepentamine

compound [(Me;Si)(H)In(p-H)Li(thf),(u-H)In(n-H)(H)(SiMes)],
which will subsequently hydrolyze to the target compound.>*

2.1.5.12 Group 14/16 adamantane-type clusters. The combi-
nation of group 14 and 16 elements entails the most
compounds investigated until now. Most examples have been
synthesized with the sulfides, selenides and, to a lesser degree,
tellurides. Looking at the group 14 element, there are many
examples for compounds with Si, Ge and Sn, but only a single
one for a compound with Pb.

Two large groups of monomeric compounds can be defined:
the first are purely inorganic cluster anions with a formal
composition of [Q4E;]*~ (487-563, Fig. 12) and their deriva-
tives. They are the analogs to previously discussed group 13
compounds like [Ga,S10]°~ but feature many more examples
and a lower charge. They are mostly formed from the elements
and/or simple binary precursors by the Methods A-C and E,
resulting in regular adamantane-type anions with mostly
(alkaline) metal or ammonium counterions.>*?* In a unique
synthetic approach, it was also shown that those clusters can be
made electrochemically using a Sn,Se; cathode in a [Et,N]|Br
electrolyte solution in ethane-1,2-diamine to form [Et,N],[Sn,-
Seyo] (517).%

The known [Ge4E;(] cluster compounds are often used as
reactants in ion exchange reactions (Method L) to introduce

© 2024 The Author(s). Published by the Royal Society of Chemistry

a desired functionality or structural template to the compound,
such as larger ammonium cations forming lamellar structures
(521-538),2**2% organic molecules (539-546)>*"°! or transition
metal complexes with interesting optical properties(547-
551).28929229% The family of clusters with metal complex coun-
terions could also be expanded by starting from elements and
binary precursors in solvothermal reactions (Method B) to not
only obtain more Ge clusters (552-556),*2°” but also Sn
congeners as well as rare earth containing examples(557-
562).>%3% In one case, the addition of antimony to such
a reaction mix of GeO, and elemental sulfur led to the forma-
tion of a compound with two distinct clusters, [(Me),NH,]¢[-
Ge,Sb,S,][GesS10] (563), one adamantane-type and another
ternary molecule with noradamantane like topology.***

Unlike the other compounds in this section, the oxo cluster
compound [Mn(en);],[Ge,O¢Te,] (564, Fig. 12) deviates from the
strict [Q4E10]*~ cluster buildup and carries terminal Te groups
at the Q position. It is obtained from a solvothermal reaction of
Ge, Te, Mn(OAc), and [Me,N]I in ethane-1,2-diamine.**>

The other group contains predominantly neutral clusters
with mostly organic ligands of the type [(RQ),Eq]. While at first
reactions were carried out using gaseous H,E (E = S, Se) and
a group 14 halide RQX;,**?* most hybrid materials can be
obtained through route D, using a solid or liquid chalcogenide

Chem. Sci, 2024, 15, 9438-9509 | 9463


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4sc01136h

Open Access Article. Published on 02 2024. Downloaded on 24.8.2025 . 0:52:56.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Chemical Science

a) b)

S Si

487

Sn

Se ,

514

View Article Online

Review

Te |

O‘T/"J
‘ T ey

e

564

Fig. 12 Examples of adamantane-type compounds with purely inorganic cluster anions with group 14 elements in the Q position and group 16
atoms in the E position: Nay[SisSio] (487, left (a)), [18-crown-6-K]4[SnsSe;o] (514, center (b)) and [Mn(en)s]2[GesO¢Tey4] (564, right (c)). Coun-

terions are omitted for clarity.

source A,E (A = alkaline metal, SiMes; E = S, Se) to prepare 565-
612 (Fig. 13).>°*** As some of them are sensitive to water, the
(SiMe;),E precursors are often advantageous for their solubility
in organic solvents. The clusters’ structure is heavily influenced
by their organic component. In some cases, this leads to an
equilibrium between compounds with an adamantane like
cluster core architecture and compounds featuring the previ-
ously discussed double decker type (see section 2.1.4).306:307:323
Especially for tin compounds, back coordinating ligands shift
the equilibrium away from the adamantane-type architecture,
also resulting in defect heterocubane type arrangements, while
some Ge congeners can be obtained in the adamantane
topology.***

Reactive organic groups on the adamantanes can be used as
a site to introduce new functionality. But to prevent the
formation of defect heterocubane or double decker type cluster
during the addition of Lewis basic ligands to an adamantane
core, back-coordination must be prevented by using inflexible
ligands.**

Tellurium containing adamantanes of the [(RQ),E¢] type
have not been obtained yet by Method D. However, in one
example, the silicon cluster [Si,{N(SiMe;)Dipp},] (Dipp = 2,6-
diisopropylphenyl) can be reacted with ("Bu);PTe to afford the
desired [(N(SiMe;)DippSi),Tee] (613, Fig. 13).>**

In a unique oxidative addition of a Sn" species N(2,6-'Pr,-
CeH3)(SiMe;3)SnCl  with elemental sulfur or selenium,
[{N(2,6-'Pr,CeH;)(SiMe;)Sn},E¢] (614-615, E = S, Se) were
isolated.?*

Aside from purely organic ligands, organometallic fragments
have also been used to stabilize adamantane-type clusters by the
same RSnX; and A,E method described above, either with
{Cp(CO),M} fragments (616-618)°>32® or ferrocenyl ligands
(619-620).323%

It was also possible to exchange one organic ligand in
[(PhSn),Se] with a M;3S, (M = Mo, W) fragment under retention
of the adamantane framework by simple addition of [Cp(CO)s-
MCI] and (SiMej;),S, resulting in [{(PhSn);SnSeH(MCp)sSs}]
(621-622, Fig. 13).3%"

9464 | Chem. Sci,, 2024, 15, 9438-9509

One case, leading to an anionic adamantane-type structure
with a gold counterion, could be realized by the rearrangement
of a defect heterocubane type cluster [{Me(O)CCH,CMe,Sn};S,]
Cl combined with a ligand extension to [Au(dppe),|[{Me(H,NN)
CCH,CMe,Sn},SeCl] (623) in the presence of a gold complex.**?

Compounds with oxygen in the E position are much rarer
with only seven examples, one of which is the only known Pb
containing adamantane [(n,-O)Pb,(OSiPh;)s] (624, Fig. 13),
featuring an endohedral ;1,-O atom and silanolate p-bridging
groups.>**33* 624 was isolated after a reaction of plumbocene
with Ph;SiOh in Et,O.

The stoichiometric hydrolysis of RSiCl; with bulky R leads to
the formation of adamantane type clusters [(RSi),0¢] (625-626,
R = ‘Bu, 'Pr), as the polymeric species are inhibited due to steric
reasons.***

A reaction more closely related to the synthesis of the higher
chalcogenide congeners is utilized for [{(Me;Si);CSn},0¢] (627),
which is made by combining (Me3Si);CSnCl; with Na,0.>"”

Two further examples obtained from hydrolysis are stabi-
lized by transition metal fragments (628-629),**%**” with the last
one being a cationic species [{Sn(DMEGqu)Br},0,(OH),|Br,
(630, DMEGqu = N-(1,3-dimethylimidazolidin2-ylidene)
quinoline-8-amine) formed by SnBr,, DMEGqu and H,O and
exhibiting a coordination number of 6 at the Sn center, unusual
for adamantane-type structures.?**

2.1.5.13 Group 15/16 adamantane-type clusters. The simplest
adamantanes with the combination of 15/16 elements are
P,O040, P,O¢, P4Sqo, P4sSejo or As,O40. They are often used as
precursors for further derivatives.

Simple derivatization reactions on [P,O¢] can be carried out
by adding terminal chalcogenide groups to the P moieties,
oxidizing them from their +III to a +V state. A straightforward
method is the thermal oxidation reaction in the presence of
trace amount of water to form [P,0;] (631).**3* Ligand
exchange reactions using [P,S;o] or [P4Se;o] can be used with
[P,O¢] to obtain the series [(P,O¢S,] (632-635, x = 1-4) and
[(P4O6Seyx] (636-638, x = 1-3) with the four fold substituted
selenium compound not being achieved due to the lower

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table12 Adamantane-type compounds with purely inorganic cluster anions with group 14 elements in the Q position and group 16 atoms in the

E position®

Compound Reagents/conditions Method
Nay[SisS;0] (487) SiS,, Na,S/800 °C, 48 h A3
Nay[Si,Se;q] (488) Na, Si, Se/800 °C A%
K4[SisTe;q] (489) K, Si, Te/350 to 400 °C, 17 h A
Nay[GesS;,] (490) GeS,, Na,S/H,O0 or GeS,, Na,S/800 °C, 48 h A/C?33:2567259
K4[Ge,S10] (491) GeS,, K,S/H,0 c*e
Rb,[Ge,S10] (492) GeS,, Rb,S/H,0 c?5

Cs4[GesS10] (493)

Ba,y[Ge4Si0] (494)
TLi[GesS10] (495)
[Me,N],[Ge,S16] (496)

[EtNH,]s[MeNH;][Ge,S10] (497)
[Liy(H20)16][GesSe10] (498)
[Liy(thf),][Ge,Seso] (499)

Nay[Ge,Seq0] (500)
K4[GesSe;o] (501)
Rb,[Ge,Seq] (502)
Cs4[Ge4Seq0] (503)
Tly[Ge,Seq0] (504)
[Me,N]y[Ge,Seqo] (505)
[(C3H;)sNH],[Ge,Se;0] (506)
[Et,N],[Ge,Te;4] (507)

[R4N]4[Sn4E;), (508-513, R = Me, Et; E = S, Se,
Te)
[18-Crown-6-K],[Sn,Se; ] (514)

(K[2.2.2]-crypt)4[Sn,Se;o] (515)

[Me,N]4[SnsSe;0] (516)
[EtyN]4[Sn,Se;o] (517)

[(CHMeEt),NH,],[Sn,Se;] (518)
[(C3H;),NH,]4[Sn,Se;0] (519)
[18-Crown-6-K],[Sn,Te;4] (520)

[CH,e1NMe,]o[Ge,S10] (521-524, n = 12, 14, 16,
18)
[CsH17;NMes][GesSeqo] (525)

[CoH1oNMe;]s[Ge,Se; o] (526)
[CgH;,NMe,H],[Ge,Se, ] (527)
[CpH,,1NMe;],[Ge,Se o] (528-530, n = 10, 11,
12)

[C,H2,+1NMes]4[GeySeqo] (531-573, n = 14, 16,
18)

[(C4Ho);NH],[Ge,Se; ] (534)
[CH1n+1NH3]4[Ge,Seq] (535-538, n = 12, 14, 16,
18)

(H,4,4"-bipy),[GesS10]-4,4"-bipy (539)
[(CuHans1)2Vio])[GesSyo] (540-543, n = 0, 2, 3,4)

[Me,Vio],[GesS1] (544)

© 2024 The Author(s). Published by the Royal Society of Chemistry

GeS,, Cs,S/H,0 or S, Ge, CSOH/H,0, 150 °C, 16
h

GeS,, BaS/1250 °C

Tl,S, GeS,/500 °C, 10 days

GeS,, [Me,N]HS, H,S/H,0, 150 °C, 4 days or
GeS,, [Me,N]Cl, Na,CO5/H,0, 120 °C, 2 days
1. GeO,, S, MeNH,/EtOH, 160 °C, 24 h

2. EtNH,/EtOH, 160 °C, 24 h

1. LiSe,, Ge, Se/heat to melt

2. H,0

1. LiSe,, Ge, Se/heat to melt

2. THF

Na, Ge, Se/800 °C

K, Ge, Se/800 °C

Rb,CO;, Ge, Se/MeOH, 190 °C, 24 h
Cs,CO3, Ge, Se/MeOH, 190 °C to RT, 4 h
Tl,Se, GeSe,/500 to 400 °C, 9 days

Ge, Se, Me,N|OH/H,0, 150 °C, 3 days

Ge, Se, N(C3H);/H,0, 230 °C, 20 days

1. K,Te, Ge, Te/heat to melt

2. [Et,N]|Br/en, 3 days

1. K,E, E, Sn/heat to melt

2. [R,N]Br/en, 100 °C, 12 h

1. K, Sn, Se/heat to melt

2. 18-Crown-6/THF, en, 14 days

1. K, Sn, Se/heat to melt

2. [2.2.2]-crypt/en, NH;, -40 °C

Sn, Se, [Me,N]OH,/H,0, 150 °C, 16 days
[Et,N]Br, Sn,Se; cathode, Ni anode/en, 300 pA,
5V, 5 days

Sn, Se (CHMeEt),NH/H,0, 160 °C, 25 days
Sn, Se, S, (C3H);N/H,0, 130 °C, 20 days

1. K,Te, Sn, Te/heat to melt

2. 18-Crown-6/THF, en, 28 days

Na,[Ge,S10] (490), [C,H,,:;NMe;|Br/H,0, 18 h

K,[Ge,Se;o] (501), [CsH,,NMe;]Br/Me,CO, H,O,
3 days

K,[Ge,Se;o] (501), [CoH,oNMe;]Br/Me,CO, H,O,
45 °C, 1 day

K,[Ge,Se;o] (501), [CsH,,NMe,H]Cl/Me,CO,
H,O0, 40 °C, 1 day

K,[Ge,Se;o] (501), [CyH,yi1NMe;]Br/Me,CO,
H,0, 80 °C, 1 day

K,[Ge,Se;o] (501), [C,H,,+1NMe;]|Br/Me,CO,
H,O0, 120 °C, 3 days

K,[Ge,Se;o] (501), (C4H,);N, HCI/Me,CO, H,O0,
50 °C, 3 days

Nay[Ge,Se;o] (500), [C,H,,.,NH;]Cl/EtOH, H,0,
60°C2h

[Me,N14[Ge,sS10] (496), Cu(NO3),, 4,4"-bipy/140 °©
C, 3 days

[Me,N],[Ge,S10] (496), [(CrHzn+1)2Vio]/'PrOH,
H,O0, 3 days

[Me,N],[Ge,S10] (496), [MV]L,/H,0, MeOH, DMF

B/C 256,260,261

253
A

262
A

G/B263—266
B281
EZSZ
E282
A267
A268

269
B

27
B270

271
A
B272

273
B
274
E
27
E275
E276

277
E

B278

283
N

279
B
B280

276
E

0284
0285
0285
0285
0285
0285
0285
0286
0287
0288

2
089
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Table 12 (Contd.)

Compound Reagents/conditions Method

TMPyP[Ge,S10] (545) [Me,N1,[Ge,S10] (496), TMPyP(PF,),/MeOH, 0o*°
H,0, DMF, 80 °C, 7 days

[DMBPE],[Ge,S10] (546) [Me,N],[Ge,S10] (496), [DMBPE]L,/H,0 o*!

[Ni(cyclam)]3[Ni(cyclam)(H,0),][GesS10)2 (547) [Me,NT,[Ge,sS10] (496), [Ni(cyclam)](ClO,)./ 0>
MeCN, H,0, 3 days

[Mn(2,2'-bipy),H,0][Ge,S10] (548) [Me,N],[Ge,S10] (496), [Mn(2,2'bipy);](ClO4),/ 0>
MeCN, H,O0, 3 days

[Fe(2,2'-bipy)s].[GesS10] (549) [Me,N],[Ge,S10] (496), [Fe(2,2'bipy);](ClO,),/ 0*”?
H,O0, 1 day

[Ni(phen);],[Ge,S10] (550) [Me,N],[Ge,S10] (496), [Ni(phen);]Cl,/MeOH, 0*”
H,0, 12 h

MnTMPyP[Ge,S,] (551) [Me,N],[Ge,S10] (496), TMPYP(PF)s, MnCl,/ o*°
MeOH, H,0, DMF, 80 °C, 7 days

[Ni(trien),],[GesS10] (552) GeO,, NiCl,, S/trien, 160 °C, 5 days B>

[M(dap);]a[GesS10]Cly (553-554, M = Co, Ni)) GeO,, Sb, S, MCl,/dap, 170 °C, 6 days B*»

[Ni,(p-teta)(teta),][Ge,S10] (555) GeO,, S, NiCl,, teta/H,0, 170 °C, 12 days B29627

[Ni(teta),]o[Ge,Seso] (556) GeO,, Se, NiCl,, teta/H,0, 170 °C, 16 days B>

[Ho,(tepa),(OH),Cl,],[Sn,Se o] (557) SnCl,-H,0, Se, HoCly/tepa,170 °C, 6 days B8

[Ni(teta)(en)][Ni(teta)(hda)][Sn,Se;0] (558) Sn, Se, Ni(OAc),, hda/teta, 170 °C, 5 days B>

[Ln,(tepa),(OH),Cl,]o[Sn,Se;0] (559-562, Ln = Y, SnCl,-5H,0, Se, LnCls, Ag/tepa, 180 °C, 6 days B*

Dy, Er, Tm)

[(Me),NH,]¢[Ge,Sb,S,][GesS10] (563) GeO,, Sb, S/DMF, 160 °C, 7 days B

[Mn(en);],[Ge,06Te,] (564) Ge, Te, Mn(OAC),, [Me,N]I/en, 150 °C, 80 h B**

“Vio = viologen dication, TMPyP = 5,10,15,20-tetrakis(N-methyl-4-pyridyl)porphyrin, DMBPE = N,N'-dimethyl-1,2-bis(4-pyridinium)-ethylene,
cyclam = 1,4,8,11-tetraazacyclotetradecane, trien = triethylentetramin, teta = triethylenetetramine.

reactivity of the reagent, which would make temperatures above
the decomposition point necessary.****** By employing this
strategy and starting from 632, a mixed S/Se compound
[(P,O6SSe] (639) is accessible as well.*** [(SP),0¢] (635) can also
be obtained by reacting [P,Oq] with elemental sulfur.***3*
Repeating the reactions with [P,0,] gives the corresponding
mixed terminated adamantane-type structures [P,0,S,] (640-
642, x = 1-3) and [P,0,Se] (643), with impurities of [P,Og] (644)
and [P,0gS,] (645-646, x = 1-2) being found in the sulfur con-
taining reaction mixture. #3334

P,Os could also be used as a non-chelating tetradentate
ligand to coordinate to Ni(CO), in a solventless reaction at room
temperature.****>> Depending on the ratio used, the complexes
[P,06{Ni(CO);},] (647-650, x = 1-4) or [(P,06),Ni(CO),_,] (651-
652, x = 2-3) could be obtained if one reactant is given in excess.
Using a stoichiometric ratio, the formation of coordination
polymers has been reported. Reactions with the iron carbonyl
[Fe(CO)s] can similarly be carried out, but proceed much slower
and at higher temperatures (653-656).%>"%

[P4Si0] (657, Fig. 14) is most easily obtained from the
elements using Method A, though many methods are
available.?3*3%¢

Arylstibonic acids, RSbO3H,, can be used as precursors for
adamantane-type structures with six coordinated Sb sites (658-
661, Fig. 14) in combination with N,O-chelating ligands which
trigger the rearrangement at elevated temperatures.*” A similar
compound can also be achieved by treating the C,P-coordinated
Sb complex (dpan)SbCl, (dpan = 6-

9466 | Chem. Sci, 2024, 15, 9438-9509

diphenylphosphinoacenaphth-5-yl) with a basic aqueous solu-
tion, yielding [{(dpan)(OH)Sb},0¢] (662).>%®

2.1.5.14 Lanthanide/group 16 adamantane-type clusters.
Lanthanide atoms occupying positions within the adamantane-
type scaffolds are only known in combination with oxygen in the
E position for a number of oxygen centered compounds. In
similarity to clusters with hydrogen (see section 2.1.1), related
compounds derived from the adamantane-type architecture, in
which some atoms in the E positions are formally replaced by
two oxygen bridges are also known, but will not be further
discussed here.***?% In either case, the lanthanides prefer
higher coordination numbers, often resulting in multiple or
multidentate ligands.

[(14-O){Ce(Logy)}404(OH),] (663, Fig. 14) was the first example
of such a compound, featuring the tripodal ligand Log: =
[Co(n°-C5H;){P(O)(OEt),};] ** It was realized by the addition of
[EtyN]OH to [LogCe(NO3);], which led to a mix of oxo and
hydroxy bridges. It is possible to treat this compound with
H,0,, which will result in exchanging the oxo bridges with n*-0,
units in the Q position (664).

The series of clusters [(i;-O)}{M(3-NO,Tp)}4(12-OMe)s] (665-
670, M = Pr-Tb; 3-NO,Tp = 3-nitrotrispyrazolylborate, Fig. 14)
also comprises a tripodal ligand on each metal center, but
methoxy groups in the E position.*”” The reaction path also
involved the formation of the monomeric metal complex by
addition of MCl; to [BuyN][3-NO,Tp] in the presence of
methanol.

Another study resulted in a compound in which most oxygen
atoms are part of a bridging ligand directly connected to the

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig.13 Examples of hybrid adamantane-type cluster compounds with group 14 elements in the Q position and group 16 atoms in the E position:
[{HOOC(CH,),Ge}4Sel (579, top left (a)), [(N(SiMes)DippSi)4Teg] (613, top center (b)), [{(PhSn)zSNSeHWCp)sS4}l (622, top right (), [(na-O)Pbyl-
OSiPhs)el (626, bottom left (d)), [{Cp*(CO),RuU},Ge)4O¢] (628, bottom center (e)) and [(SN(DMEGqu)Br)4O4(OH),]Br, (630, bottom right (f)).

Hydrogen atoms are omitted for clarity.

metal centers.**® [(us-O){(SON)Yb},(SON),(OH), (671, SON =
(benzothiazole-2-yl)phenolate, Fig. 14) contains SON ligands
with two different connecting modes: chelating a single Yb site
or connecting two such atoms via one of its oxygens and two E
positions.

Two clusters, [(1ts-O)M,4(HL);3(SCN),(H,0),] (672-673, M =
Dy, Eu, Fig. 14), were constructed by arranging the metal
atoms stemming from M(SCN); around two polydentate
ligands 2-hydroxy-N-[2-hydroxy-3-[(2hydroxybenzoyl)amino]
propyl]benzamide (HsL), which comprise all oxygen atoms
in the E position.>*®

2.1.6 Q/group 17 adamantane-type clusters. Group 17
elements only occur in the E position in adamantane-like
structures and mainly in (oxygen centered) copper clusters,
although there are a few examples outside of this elemental
combination, which will be discussed first. While the
compounds with the higher congeners Cl, Br and I comprise no
further, or only one, ligand at the Q atom, all examples for
species with F carry three ligands to expand the coordination
sphere on the Q atom to six. Nearly all compounds are produced

© 2024 The Author(s). Published by the Royal Society of Chemistry

from elements or simple binary compounds under addition of
an appropriate counterion, which is often important for the
formation of an adamantane-type scaffold over other structural
motifs.

A study showed the formation of simple anionic [Be,Cl;o]*~
compounds (in 674-678) with various cations in solid state
reactions of BeCl, and chlorides.?”°

There is an oxygen centered example of a magnesium
adamantane-type cluster [u,-O{Mg(Et,O)},Brs] (679, Fig. 15)
prepared by directly reacting the Grignard reagent PhMgBr with
0O, in ether.’"*372

Titanium mostly forms adamantane-type clusters of the
composition [(TiF3),F¢]*~ (680-685, Fig. 15). All of them are
formed from TiF, in the presence of an appropriate counterion
complex, such as crown ether coordinated alkaline metals,
ammonium or phosphonium cations.?”**”*> These reactions can
be carried out in conventional solvents like MeCN or in liquid
HF.

In the presence of a macrocyclic arene during the formation
of the adamantane, coordination to two Ti moieties under

Chem. Sci., 2024, 15, 9438-9509 | 9467
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Table 13 Hybrid adamantane-type cluster compounds with group 14 elements in the Q position and group 16 atoms in the E position®

Compound Reagents/conditions Method
[(MeSi),Se] (565) MeSiCls, H,S/200 °C, 12 h F304:305
[(EtSi)4S6] (566) EtSiCl;, H,S/150 °C, 3 h F3
[(ThexSi),Se] (567) 1. Li,S, ThexSiCls/THF, 0 °C to RT, 14 days D306:307
2. Decaline, 195 °C, 24 h
[(PhSi),Se] (568) PhSiCl;, Na,S/THF, 0 °C to RT, 24 h D*'°
[(RSi),S6] (569-570, R = 1-Np, Sty) Na,S, 1-NpSiCly/THF, 0 °C, 18 h D%
[(MeSi),Seq] (571) MeSiCl;, H,Se/400 °C, 1 h p3
[(EtSi),Seq] (572) EtSiCls, H,Se, Al/150 °C, 3 h F3
[(ThexSi),Seq] (573) 1. Li,S, ThexSiCl;/THF, 0 °C to RT, 5 days D?06307
2. Decaline, 150 °C, 3 h
[(Phsi),Seq] (574) Na,Se, PhSiCl;/THF, 0 °C, 18 h D*%®
[(MeGe),Se] (575) MeGeBr;, H,S, NEt3/CeHg, 80 °C, 1 h D332
[(EtGe)sSe] (576) EtGeCls, (SiH;),S, Al,Cls/CS,, 75 °C, 7 days D3
[(CF3Ge)4S6] (577) CF;GeCly, (SiH3),S, AlLCls/CS,, 80 °C, 10 days D’
[(ThexGe),Se] (578) 1. Li,S, ThexGeCl;/THF, 0 °C to RT, 24 h D?06397
2. Decaline, 195 °C, 24 h
[{HOOC(CH,),Ge}4S6] (579) HOOC(CH,),GeCl;, Na,S/Me,CO, H,0, 3 h D**3
[{Me(O)CCH,CMe,Ge}4Se] (580) MeOCCH,CMe,GeCl;, Na,S/Me,CO, H,0, 4 h D**?
[{NC(CH,),Ge}4S6] (581) NC(CH,),GeCl;, Na,S/Me,CO, H,0, 5 h p*"
[(PhGe),S6] (582) PhGeCl;, Na,S/Me,CO, H,0, 1 h D310
[(CFsGe),Ses] (583) CF;GeCls, (SiHj3),Se, Al,Clg/n-hexane, 110 °C, 4 days D*"
[(ThexGe),Seq] (584) 1. Li,Se, ThexGeCl3/THF, 0 °C to RT, 24 h D306:307
2.C¢Hg, 80 °C, 24 h
[{NC(CH,),Ge},Seq] (585) NC(CH,),GeCl, Na,Se/THF, 30 h D3

(MeSn),Se] (586)
(PhSn),Se] (587)
("BuSn),Se] (588)
("PrSn),Se] (589)
(mesSn),Se] (590)
(1-NpSn),Se] (591)
(4-MeC4H,Sn),Se] (592)
(4-MeOCgH,Sn),Ss] (593)
(4-FC6H,Sn),S6] (594)
(3-FCsH,4Sn),S6] (595)
(C6F5Sn)4S6] (596)
{(Me;Si);CSn},4Se] (597)
(StySn)aSe] (598)
(CySn).Se] (599)
(BnSn),Se] (600)
{Et0,C(CeH,)CH,CH,Sn},S¢] (601)
[(CpSn).Se] (602)

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[(MeSn),Ses] (603)
[("BuSn),Ses] (604)
[{(Me;Si);CSn},Sec] (605)
[(‘PrSn),Se;] (606)
[(PhSn),Seq] (607)
[
[
[

—_—

(BnSn),Se¢] (608)
Et0,C(CH4)CH,CH,Sn),Seq] (609)
CpSn),Ses] (610)

—_

[(CySn),See] (611)
[{Me(PhNHN)CCH,CMe,Ge},S¢] (612)
[(N(SiMe;)DippSi),Teg] (613)
[{N(2,6-'Pr,CsH;)(SiMe,)Sn},Eq] (614-615, E = S, Se)
[({Cp(CO),Fe}Sn),Se] (616)

[{cp(CcO)sMo}Sn),Teg] (617)

[{Cp(CO)Fe},5n),4Se] (618)

[(FeSn),Se] (619)

[(FeSn),Seq] (620)

[{(PhSn);SnScH(MCp);S4}] (621-622, M = Mo, W)
[Au(dppe),][{Me(H,NN)CCH,CMe,Sn},S¢Cl] (623)

9468 | Chem. Sci, 2024, 15, 9438-9509

MeSnl;, H,S, HCI/H,O or MeSnCl;, Na,S/Me,CO, H,O, 3 h
PhSnCls, Na,S/Me,CO, H,0, 4 h

"BuSnCl;, Na,S/Me,CO, H,0, 3 h

("PrSn),0;, Na,S, HCI/H,0, 3 h

mesSnCl;, Na,S/H,0, Me,CO, 0 °C, 12 h
1-NpSnCl;, Na,S/H,0, Me,CO, 0 °C, 18 h
4-MeCgH,SnCl;, Na,S/H,0, Me,CO, 0 °C,4 h
4-MeOC¢H,SnCl;, Na,S/H,0, Me,CO, 0 °C, 2 h
4-FC¢H,SnCl,, Na,S/H,0, Me,CO, 0 °C, 14 h
3-FC6H,SnCl3, (SiMe;),$/10 °C, 1 h

CeF5SnCls, (SiMe3),S/CsHe, 10 °C, 15 min
[(Me3Si);CSnBr;], Na,S/NH3, 24 h

PhSnCl;, Na,S/THF, 0 °C to RT, 24 h

CySnClj, (SiMe;),S/toluene, 24 h

BnSnCls, (SiMe;),S/toluene, 5 min
EtO,C(Ce¢H,4)CH,CH,SnCls, (SiMej),S/toluene, 2 h
1. SnCl,, NaCp/toluene, 0 °C, 5 h

2. (SiMe;),S/toluene, 1 h

MeSnBr;, NaHSe, Na[BH,]/H,0, 1 h

Na,Se, "BuSnCl;/NH;, —33 °C, 5 h
[(Me3Si);CSnBr;], NaySe/NH3, 24 h

'PrSnCl;, Na,S/H,0, Me,CO, 0 °C, 18 h

PhSnCls, (SiMej;),Se/toluene, 5 min

BnSnCl;, (SiMe;),Se/toluene, 5 min
EtO,C(C¢H,4)CH,CH,SnCls, (SiMej),Se/toluene, 16 h
1. SnCl,, NaCp/toluene, 0 °C, 5 h

2. (SiMe;),S/toluene, 5 min

CySnClj, (SiMes),Se/toluene, 1 h
[(MeOCCH,CMe,Ge),Ss], H,NNHPh/CH,Cl,, 3 h
[Si,{N(SiMe;)Dipp},], ("Bu)sPTe/toluene, 110 °C, 2 h
N(2,6-'Pr,C¢H;)(SiMe;)SnCl, E/THF, 18 h
[{Cp(CO),Fe},SnCl,], (SiMe3),Se/THF

[{Cp(CO)sMo}SnCl;], (SiMe;),Te/THF, —78 to —18 °C, 19 days

[{Cp(CO),Fe}sSnCl;], (BuzSn),S/toluene, 12 h
FeSnCly, Na,S/THF, 0 °C, 31 h

FeSnCly, K,Se/THF, 48 h

[(PhSn),Se] (587), [M(CO);CpCl], (Me;3Si),S/THF, 15 h

1. [{Me(O)CCH,CMe,Sn};S,]Cl, AuCl, dppe, (Me;Si),S,/CH,Cl,, 17 h

2. PANHNH,/CH,Cl,, 45 min

303,304,315,316
G/D » >

D304
D304:316,317
D316
D319
D319
D31
D319
D319
D319
D31

D317
D320
D321
D321
D321
D321

D318
D317
D317
D322
D321
D321
D321
D321

D321
Q323

324

-

325
326

D

D37

D328
D329
D330
R331
R332
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Table 13 (Contd.)
Compound Reagents/conditions Method
[(14-O)Pb4(OSiPh3),] (624) Ph;SiOH, [Pbep,]/Et,0, 35 °C, 30, min D333
[(‘BuSi)s06] (625) ‘BuSiCl;, H,O/Et,0, 24 h °
[(‘PrSi),06] (626) 'PrSicCl,, H,0/Et,0, —80 °C to RT, 2 days %
[{(Me;Si);CSn}40¢] (627) [(Me5Si);CSnBr;], NayO/NH;, THF, —78 °C, 6 h D7
[{Cp*(CO),Ru},Ge),0¢] (628) 1. [Cp*RuCO(GeCl,)],, K/THF, 48 h ¢
2.0,
[{(CO)sWGe},0,(0H),] (629) 1. 2-Methoxybenzyl alcohol, Ge[N(SiMe;),],/Et,O, 30 min il
2. [W(CO)s(thf)/THF, 12 h
3. H,0 in pentane
[(Sn(DMEGqu)Br),04(OH),|Br, (630) SnBr,, 3,5-ditert-butyl-o-benzoquinone, DMEGqu/THF, H,O 8

“ Thex = 1,1,2-trimethylpropyl, Np = naphthyl, Sty = para-styryl, Cy = cyclohexyl, Cp = cyclopentadienyl, Dipp = 2,6-diisopropylphenyl, DMEGqu =

N-(1,3-dimethylimidazolidin2-ylidene)quinoline-8-amine.

elimination of two fluorines at each position was observed,
leading to [(TiCly),(Ti{da6aH,(H,)})Fs] (686, dacaHs = p-
methyl-dimethyldiazacalix[6]areneH).>”® Another formal, but
this time complete, exchange of the terminal fluorine atoms by
chlorine was observed for [C,;mim],[(TiCl;),F¢] (687, Cymim =
1-butyl-3-methylimidazolium) obtained after an ionothermal

a) b)
2]
ol 4
¢ B
657 658
d) e)
. EG o)
|
670 671

reaction of TiCl, under decomposition of the [BF,] counterion
of the ionic liquid.*””

The cage compound [{Nb)NMe,);},F¢]Cl, (688) is obtainable
by a synthesis using NbFs and Me;SiNMe, in chloroform and
toluene.?”® While the anion is exchanged by Br in CH,Br, (689),
dissolving the cluster in H,O exchanges one of the F atoms in

c) Co

Ce

663

672

Fig. 14 Examples of adamantane-type with group 15 and lanthanide elements in the Q position and group 16 atoms in the E position: [P4S;]
(657, top left), [{(8-HQ)(p-Cl-CeH4)Sb}4O6] (658, top center (a)), [(1a-ONCelloed}aO4(OH),] (663, top right (b)), [(1a-ONEU(3-NO,Tp)}a(na-OMe)sl
(670, bottom left (c)), [(Lsa-ON(SON)Yb}4(SON)4(OH),] (671, bottom center (d)) and [(ps-O)Dy4(HL)3(SCN)4(H20),] (672, bottom right (e)).
Hydrogen atoms are omitted for clarity.
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Table 14 Adamantane-type with group 15 and lanthanide elements in Q position and group 16 atoms in the E position®

Compound Reagents/conditions Method
[P,O] (631) P,06, H,O/diglyme, 140 °C p339-342
[(P406S,] (632-635, x = 1-4) P,0s, [P4S10)/PhMe, 110 °C p*43
[(SP)40¢] (635) P40, S/160 °C p4537
[(P4O¢Se,] (636-638, x = 1-3) P,0s, [P4Se;0)/PhMe, 110 °C p33sae
[(P40688e] (639) [P404S] (632), [P4Se;0])/PhMe, 110 °C p*®
[P,0S,] (640-642, x = 1-3) [P,0-] (631), [P4S;10)/PhMe, 110 °C p3i3348
[P4O7Se] (643) [P,0-] (631), [P4Se;0]/PhMe, 110 °C p343:319
[P,Og] (644) [P,0-] (631), [P4S10)/PhMe, 110 °C p3
[P404S,] (645-646, x = 1-2) [P,0O,] (631), [P,4S;0)/PhMe, 110 °C PP
[P406{Ni(CO);},] (647-650, x = 1-4) P,0¢, Ni(CO),/10 min p3o0-352
[(P406):Ni(CO),_,] (651-652, x = 2-3) P,0s, Ni(CO),/10 min po03t
[P4O¢{Fe(CO),},] (653-656, x = 1-4) P,0s, [Fe(CO)5)/103 °C, 24 h p3s13s3
[P4S10] (657) P, S,/100 °C A3P47356
[{(8-HQ)(p-X-C¢H,4)Sb},40¢] (658-659, X = Cl, Br) P-X-C¢H,SbO;H,, 8-HQ/toluene, 110 °C, 6 h c*’
[{(Hynaphpz)(p-X-CsH,)Sb},06] (660-661, X = Cl, Br) Dp-X-C¢H,SbO;3H,, Hynaphpz/toluene, 110 °C, 6 h c*¥
[{(dpan)(OH)Sb},06] (662) dpanSbCl,, NaOH/H,0, Et,0, 18 h 8
[(14-0){Ce(Lo)}404(OH),] (663) [Et,;NJOH, [CeLoy(NO3);/MeCN, 1 h o’
[(n4-0){Ce(Lor)}4(0,)4(OH),] (664) [(ra-O){Ce(Loge)}a04(OH),] (663), H,0,/MeCN, 1 h %6
[(14-O){M(3-NO,Tp)}4(1,-OMe)s] (665-666, M = Gd, Tb) MCl;-H,0, [BuyN][3-NO,Tp]/MeOH, 3 days c**
[(14-0){M(3-NO,Tp)}4(11,-OMe)¢] (667-670, M = Pr, Nd, Sm, Eu) MCl;-H,0, [Bu,N][3-NO,Tp]/MeOH, 2-4 weeks c*’
[(14-O){(SON)YDb},(SON),(OH),] (671) Yb[N(SiMe;),], HBT/DME, H,0, 30 °C, 1 h /K368
[(1t4-O)M4(HL)5(SCN),(H,0),] (672-673, M = Dy, Eu) H;L, Et;N, M(SCN);-6H,0/MeOH, MeCN, 100 °C, 2 days K

% 8-HQ = 8-hydroxyquinoline, Hynaphpz = 2-[1H-pyrazol-5(3)-yljnaphthalene-1-ol, dpan = 6-diphenylphosphinoacenaphth-5-yl, Log: = [Co(n’-

CsH;){P(O)(OEt),};] ", 3-NO,Tp = 3-nitrotrispyrazolylborate, SON =

(benzothiazole-2-yl)phenolate, HBT = 2-(2-hydroxyphenyl)benzothiazole, H;L

= 2-hydroxy-N-[2-hydroxy-3-[(2hydroxybenzoyl)Jamino]propylJbenzamide.

the E position with an O atom and eliminates a ligand to form
[{Nb(NMe,);},{Nb(NMe,),}F5s0]Cl (690, Fig. 15).

A Cr compound [ps-O{Cr(thf)},Cls] (691) with a central
oxygen and coordinated solvent molecule very similar to the Mg
species 679 was obtained from CrCl,, "BuLi and LiOH-H,0 in
THF.>”®

Two derivatives with both Cl and I sites in the E position [ji,-
O{Cr(solv)},CL,1,] (692-693, solv = THF, tetrahydropyran (thp),
Fig. 15), could be found in small quantities while trying to
synthesize the methylidine complexes [Cr;Clz(p-Cl)s(ps-
CH)(solv)e].>*°

A tungsten congener in oxidation state V+ features an
anionic fluorine scaffold in [Cp,WCL,],[(WF3),Fs] (694), result-
ing from the comproportionation reaction of WFs and
[Cp,WCI, ]2

The Mn analogs [p-O{Mn(PR;)},Cls] (695-696, R; = "Pr3,
PhMe,, Fig. 15) were prepared by bubbling O, through an
anhydrous solution of [MnI,(PR;)].>*>3%

Another fluorine cluster [H8-HQ]q[(FeFs).Fs] (8-HQ =
hydroxyquinoline, 697, Fig. 15) was isolated after a solvothermal
reaction of FeF,, FeF; and 8-HQ in the presence of HF.***

2.1.6.1 Group 11/17 adamantane-type clusters with a central
1,-O atom. Compounds with copper form by far the biggest
group of this combination. The vast majority of compounds
with Cl and Br in the E position comprise a central oxygen atom
and will be discussed first.

The first compounds discovered were the neutral Cu'
complexes of the type [p4-O{Cu(L)}4Cls] (698-758, Fig. 16) with L
being a neutral ligand. They were isolated after an addition of

9470 | Chem. Sci,, 2024, 15, 9438-9509

simple CuCl, to L in the presence of ambient air, hydroxide or
Cu0.***¢ In some of those cases, the oxygen source could not
be determined and is most likely a H,O or O, impurity in the
reaction, or stems from decomposition of the solvent. A devi-
ating synthetic strategy uses oligomeric [LCuCl], complexes
already containing the desired ligand, which rearrange to the
desired product.**”**° The clusters [p,-O{Cu(solv)},Clg] (707 and
737, solv = MeCN, MeOH) can also be used in ligand exchange
reactions to generate different compounds with more Lewis-
basic ligands (748-749).>****° A unique approach was taken in
the formation of [p,-O{Cu(Amt)},Clg] (758, Amt = 1,3-diamino-
1,2,2-trimethylcyclopentane), which is formed after the ligand
in [Cu(a-CgPAmtHMe)(Cl)][BF,] (CgP = 1,3,5,7-tetramethyl-
2,4,6-trioxa-8-phosphatricyclo[3.3.1.1]-decane) decomposes
after addition of KHMDS.***

Heterogenous substitution is possible as well in cases where
multiple coordinating molecules are present (759-765).10"44>444

Anionic clusters can be generated when not all chloride
atoms are substituted by a ligand during the reaction.*'®*¢
When no coordinating ligand is present, tetraanions [p,-
O(CuCl),Cl¢]*~ (in 766-772, Fig. 16) can be isolated readily with
different counterions.***>!

While not as extensively studied, the Br homologs [p4-O
{Cu(L)}4Bre] (773-779, Fig. 16)**43245245% were found to be
achievable in a similar way by using the appropriate CuBr, salts.

The mixed cluster [p,-O{Cu(L)},Cls_,Br,] (780-807) with n =
0-6 are available from using both CuBr, and CuCl, during the
formation reaction, or by ligand exchange from [p,-O
{Cu(MeOH)},Cl,_,Br,] (780-786).45¢

© 2024 The Author(s). Published by the Royal Society of Chemistry
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a) b) c)
) C
[ {Nb (N
679 680 690
d) e) f)
P
Mn
692 695 697

Fig. 15 Examples of adamantane-type clusters with group 2 and 4-8 atoms in the Q position and group 17 atoms in the E position: [p4-O
{Mg(Et,O)}4Brgl (679, top left), [[Nb)NMe,)s}4{Nb)NMe,),}FsOICL, (680, top center (a)), {Nb)NMe,)sta{Nb)NMe,),}FsOICl, (690, top right (b)), [ps-
O{Cr(thf)}4Clyl,] (692, bottom left (c)), [ns-O{MN(P"Pr3)}4Clgl (695, bottom center (d)) and [H8-HQIg[(FeFs)4Fgl (697, bottom right (e)). Hydrogen

atoms and counterions, if present, are omitted for clarity.

2.1.6.2 Group 11/17 adamantane-type clusters without central
1O atom. Unlinke the many oxygen centered chloride
adamantane-type structures, there is only one example for an
oxygen free species besides a binary copper complex, namely in
[Hodpipa]s[Cu,Clg][Cu,Clg] (808, dpipa = N,N'-dimethylpiper-
azine), obtained from dissolving elemental Cu in HCI together
with dpipa and treating it solvothermally in aqueous solution at
120 °C degree for 24 h.**°

The analogous Br cluster [CuyBrg]*~ (in 809-816) is found in
combination with different ammonium, phosphonium and
a Mg complex counterions, always available through a reaction
of CuBr with the corresponding complex bromide.****** One
such cluster (806) was also found in a side reaction during the
catalytical C-C bond formation between allyl bromide and
a (C¢Fs)~ ligand from a mixed Cu/Al complex.*** The congener of
the only known Cl species discussed before [H,dpipa];[Cu,Brg]
[Cu,Brg] (815) is synthesized in an analogous way by exchanging
HCI with HBr.

Even larger complexes can be found in the compound
[Ti;(113-0)14(O'Pr),5][Cu,Br] (816), in which a polyoxotitanium

© 2024 The Author(s). Published by the Royal Society of Chemistry

cluster formed alongside the adamantane when treating CuBr
with [Ti(O'Pr),] under solvothermal conditions.*%

There is only one example of a compound with a [Cu,Brs]
inorganic core carrying terminal ligands: [{Cu(Hdabco)},Bre](-
HCOO), (817, dabco = 1,4-diazabicyclo[2.2.2]octane). It is iso-
lated from CuBr and dabco, and contains [{Cu(Hdabco)},Bre]**
cations forming loose networks by hydrogen bonding between
the cluster units.**®

Synthethic strategies for the preparation of [Cu,Is]*~ (in 818-
832, Fig. 17) are generally the same as for the bromide
compounds. Simple species with ammonium, arsonium or
phosphonium are isolated after reactions of Cul, or alternatively
Cu and I,, with an appropriate complex salt (818-823).%%°7
Another type of counterion often used are alkaline metal
complexes with multidentate ligands such as crown ethers
(824-827).#7*7¢ They are accessible through iodine salts of Cu
and the alkaline metal used, if a polyether of the appropriate
size is present. [Cuyls]*”, similar to its Br congener, is also
present as a counterion with other complexes of interest. It is
found either as the sole anion or together with [Cu,l,] in
compounds with phosphine Mn complexes, depending on the

Chem. Sci., 2024, 15, 9438-9509 | 9471
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Table 15 Adamantane-type clusters with group 2 and 4-8 atoms in Q position and group 17 atoms in E position®

Compound Reagents/conditions Method
[H4N]y[Be,Clyo] (674) BeCl,, NH,C1/400-230 °C N
Cs,[Be,Clyo] (675) BeCl,, CsCl/400-230 °C NG
Rb,[Be,Cly0] (676) BeCl,, RbCl/400-230 °C A3
K,[Be,Clyo] (677) BeCl,, KC1/400-230 °C A7
Tl,[Be,Clyo] (678) BeCl,, TIC1/400-230 °C A37°
[14-O{Mg(Et,0)},Bre] (679) BrMgPh, 0,/Et,0 G717
[TiF,(15-crown-5)][(TiF;)4Fs] (680) TiFy, 15-crown-5/MeCN c’?
[0-CeH4(PPh,H),][(TiF;)4Fe] (681) TiF,, 0-CeH,(PPh,),/MeCN, CH,Cl,, 1 h ci7t
[0-CeH4(AsMe,H),][(TiF;)4Fs] (682) TiF,, 0-CeH,(AsMe,),/MeCN, CH,Cl,, 1 h ct
[H'PrS(CH,),S PrH][(TiF;),F¢] (683) TiF,, 'PrS(CH,),S'Pr/MeCN, CH,Cl,, 1 h ci7t
[Me,N1,[(TiF5),Fs] (684) TiF,, [Me,N]F/HF, —196 K to RT F*7°
[Ph,P),[(TiFs),Fe] (685) TiF,, [Ph,P]F/HF, —196 K to RT F*7°
[(TiCl,),(Ti2{da6aH,(H,)})F¢] (686) TiF,, p-methyl-dimethyldiazacalix[6]areneHg/toluene, 110 °C c¥e
[C4smim],[(TiCl;)4Fs] (687) TiCly, [C;mim][BF,]/70 °C B’
[{Nb)NMe,)s}4F6]Cl, (688) NbF;5, Me;SiNMe,/toluene, CHCl; c’7®
[{Nb)NMe,);},Fs]Br, (689) [{Nb(NMe,)s}4F6]Cl, (688)/CH,BI, 0’78
[{Nb)NMe,);},{Nb)NMe,),}F50]Cl, (690) [{Nb(NMe,);}4F6]Cl, (688)/H,0 78
[14-O{Cr(thf)},Cle] (691) LiOH-H,0, "BuLi, CrCl,/THF, hexane c*”?
[14-O{Cr(thf)}4Cl,1,] (692) [Cr3Cl3(n-Cl)3(p5-CH)(thf)], benzaldehyde/THF 380
[14-O{Cr(thp)},Cl41,] (693) CrCl,, CHI;/THP, —35 °C to RT, 19 h c80
[CP,WCL,],[(WF3),Fe] (694) [CP,WCl,], WF4/SO, c*®
[1-O{Mn(P"Pr;)}4Cl] (695) [MnI,(P"Pr;)], O,/n-pentane F382
[ns-O{Mn(P"PhMe,)},Cls] (696) [MnI,(P"PhMe,)], O,/n-pentane F*%
[H8-HQ]q[(FeF3)4Fs] (697) FeF,, FeF;, 8-HQ, HF/H,0, EtOH, 120 °C, 72 h B8

“ Cy;mim = 1-butyl-3-methylimidazolium, da6aHs = p-methyl-dimethyldiazacalix[6]areneHs.

phophine used (828-829).*”” Reaction conditions apart from the
nature of the ligand stay the same: MnlI, and Cul are reacted
with R(PPh,0),. Similarly, (BPPIP)[{(BPPIP)Cu,l;},][Cu,ls] (830,
BPPIP = Bis-triphenylphosphonio-isophosphindolide)
comprises an additional phosphine coordinated linear Cuylg
complex besides the adamantane.*”® This formation of multiple
Cu/I complexes in one compound is also observed for K[K(12-
crown-4)Js[Cu,lg][Cugli3] (831), prepared according to the
strategy described for other ether complex species.*”® This

b)

698 766

showcases the importance of the nature of the counterion for
the structural motif of the cluster ion.

Lastly, the Cu/I-adamantane motif is observed as a coun-
terion to a three dimensionally extended metal organic frame-
work [Co(tib),][Cusls] (832, tib = 1,3,5-tris(1-imidazolyl)
benzene) after a reaction of CoO, Cul and tib according to
Method B.*°

2.1.6.3 Group 11/12 adamantane-type clusters. A very
complex compound [{Cp*NbClO};][(Cp*Nb);Cl,0;0H][(ZnCl),-
Clg] (833, Fig. 17) featuring two cationic Nb clusters and

774

Fig. 16 Examples of adamantane-type clusters with a central ps-oxygen atom, Cu in the Q position and group 17 atoms in the E position: [pi4-O
{Cu(Py)}14Cle] (698, left (a)), [MegNI4lns-O(CuCl)4Clgl (766, center (b)) and [ps-O{Cu(nicotine)}4Brgl (774, right (c)). Hydrogen atoms and coun-

terions, if present, are omitted for clarity.

9472 | Chem. Sci., 2024, 15, 9438-9509
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Table 16 Adamantane-type clusters with a central ps-oxygen atom, Cu in the Q position and group 17 atoms in the E position®

Compound Reagents/conditions Method
[14-O{Cu(Py)}4Cle] (698) CuCl,, NaOH/Py, 2 days %
[14-O{Cu(2-methylpyridine)},Cls] (699) CuCl,, 2-methylpyridine/MeOH, 65 °C, 24 h c*®
[14-O{Cu(OPPh,)},Cls] (700) CuCl,, CuO, OPPh,;/MeNO,, 100 °C, 3 h cse
[14-O{Cu(3-quinuclidinone)},Clq] (701) CuCl,-2H,0, 3-quinuclidinone, MeONa/MeOH, 65 °C, 15 min (oxkd
[14-O{Cu(HMTA)},Clq] (702) CuCl,-H,0, HMTA/Me,CO c8
[14-O{Cu(OSR,)}4Cl¢] (703-704, R = Et, "Pr) CuCl,-2H,0, OSR,/Me,CO, 24 h c*°
[14-O{Cu(N-Methylimidazole)},Cls] (705) CuCl,-2H,0, N-methylimidazole/MeOH 391392
[1-0{Cu(dmso)}4Cle] (706) Cu/CCl,, DMSO 393391
[14-O{Cu(MeCN)},Cly] (707) CuCl,-2H,0, HBDA/MeCN, 82 °C 394398
[14-O{Cu(1,2-dimethylimidazole)},Clg] (708) CuCl,-2H,0, 1,2-dimethylimidazole/EtOH, MeOH c*®
[14-O{Cu(nictonie)},Cls] (709) CuCl,-2H,0, nicotine/H,0, Me,CO c*7
[14-O{Cu(3,4-dimethyl-5-phenylpyrazole)},Clg] (710) CuCl,-2H,0, 3,4-dimethyl-5-phenylpyrazole/EtOH o8
[14-O{Cu(N,N-dimethylaminomethylferrocene)},Clg] (711) CuCl, N,N-dimethylaminomethylferrocene, O,/CH,Cl,, 20 min c*°
[14-O{Cu(7-azaindol)},Cl¢] (712) CuCl,-2H,0, 7-azaindol/MeOH, 65 °C, 15 min 0
[14-O{Cu(Me,NH)},Cl¢] (713) Cu/Me,NH-HCI, DMF, 50 °C, 30 min c*ot
[14-O{Cu(cpz)}4Clg] (714) CuCl,-2H,0, cpz/EtOH c
[14-O{Cu(1-(4-picolylpyrrolidin-2-on)},Cle] (715) CuCl,-2H,0, 1-(4-picolyl)pyrrolidin-2-on/MeOH c
[14-O{Cu(morpholine)},Cl¢] (716) CuCl, morpholine, Cl;CCOOMe/MeCN, H,0, 30 min C10105
[14-O{Cu(Ph,SNH)},Cle] (717) CuCl,-2H,0, Ph,SNH, air/MeCN, 1 day coe
[14-O{Cu(Imidazole)},Cl¢] (718) CuCl,-2H,0, imidazole/MeOH c'’
[14-O{Cu(thf)},Cl¢] (729) CuCl,-2H,0/THF o8
[14-O{Cu(2-methyl-2-thiazoline)},Clg] (720) CuCl,-2H,0, 2-methyl-2-thiazoline/MeOH c'
[14-O{Cu(2-ethylpyrazine)},Clg] (721) CuCl, 2-ethylpyrazine, air/MeCN, 2 days cto
[14-O(Cu{1-(1-Isoquinolyl)benzotriazole}),Clg] (722) CuCl,-2H,0, 1-(1-isoquinolyl)benzotriazole/MeOH, CHCl;, 1 day cHt
[14-O{Cu(3-mesitylpyrazole)},Clg] (723) CuCl,-2H,0, 3-mesitylpyrazole, NaOH/MeOH, 18 h c*2
[1a-O{Cu(3-benzyl-benzimidazole)},Cls] (724) CuS0,-5H,0, benzimidazole, benzlychloride/Py, 120 °C, 36 h B
[14-O{Cu(2-ethyltetrazole)},Clg] (725) CuCl,-2H,0, 2-ethyltetrazole/MeOH, 1 h cH
[14-O{Cu(1-Methylbenzotriazole)},Clg] (726) CuCl,-2H,0, 1-methylbenzotriazole, CuO/MeOH, 65 °C, 1 h c'
[14-O{Cu(pyridine N-oxide)},Clg] (727) CuCl,-2H,0, pyridine N-oxide/MeOH, 45 min cHe
[14-O{Cu(2-Methylimidazole)},Cls] (728) CuCl,-2H,0, 2-methylimidazole/MeOH, 45 min che
[14-O(Cu{OP(NH'Bu);}),Clg] (729) CuCl,-2H,0, OP(NH'Bu);/hexane, 80 °C, 38 h c
[14-O{Cu(3,5-dimethylpyrazole)},Clq] (730) CuCl,-2H,0, acetylacetone, benzohydrazide/EtOH, 8 h e
[14-O{Cu(1,4-dioxane)},Clq] (731) CuCl,-2H,0, 1,4-dioxane, benzoylhydrazine/MeOH, CH,Cl,, 30 min c*0
[14-O{Cu(1-ethyl-5-nitro-1,2,3-triazole)},Cls] (732) CuCl,-2H,0, 1-ethyl-5-nitro-1,2,3-triazole/EtOH, 78 °C, 1 h c*t
[14-O{Cu(3-hydroxyethylpyridine)},Clg] (733) CuCl,-2H,0, 3-hydroxyethylpyridine/MeOH c*?
[14-O{Cu(Quinuclidine)},Cls] (734) CuCl, quinuclidine, air/MeCN, 82 °C, 30 min c'»
[n4-O(Cu{1-(pyridin-2-ylmethyl)-1H-benzimidazole}),Clg] CuCl,-6H,0, 1-(pyridin-2-ylmethyl)-1H-benzimidazole, air/MeCN, H,0 c*
(735)
[14-O{Cu(benzylamine)},Cl¢][Cu(benzylamine),Cl,] (736) CuCl,-2H,0, benzylamine/MeOH, 10 min c*
[14-O{Cu(MeOH)},Cl¢] (737) CuCl,-2H,0, CuO/MeOH, 65 °C, 2 h c*
[14-O{Cu(Pz""*H)},Clg] (738) CuCl,-2H,0, Pz""™H, sodium parafluorobenzoate/MeOH, 4 h c*
[14-O{Cu(DASO0)},Clg] (739) CuCl, DASO, air/allyl chloride, 3 h c'?e
[n4-O{Cu(4-dimethylaminopyridine)},Cly] (740) CuCl,-2H,0, 4-dimethylaminopyridine, 2,2,6,6-tetramethylpiperidinyl-1-  C**”
oxyl, BhOH/MeOH, CH,Cl,, 10 min
[1-O{Cu(phenethylamine)},Clg]- [Cu(phenethylamine),Cl,] ~ CuCl,-2H,0, phenethylamine/MeOH, 10 min c*8
(741)
[14-O{Cu(N,N-dimethylbenzylamine)},Cls] (742) CuCl,-2H,0, N,N-dimethylbenzylamine/MeOH, 10 min c*®
[14-O{Cu(cyclohexanemethylamine)},Cls]- 1,5 CuCl,-2H,0, cyclohexanemethylamine/MeOH, 10 min c*?®
[Cu(cyclohexanemethylamine),Cl,] (743)
[n4-O{Cu(pyrazole)},Cly] (744) CuCl,-2H,0, pyrazole/MeOH, 65 °C, 2 h c®e
[14-O{Cu(dimethyl acetamide)},Clq] (745) CuCl,-2H,0, dimethyl acetamide/1,4-dioxane, 50 °C, 24 h c*
[14-O{Cu(1-vinylimidazole)},Cls] (746) CuCl,-2H,0, 1-vinylimidazole/MeOH, H,0, 60 °C, 2 days c®0
[14-O{Cu(metronidazole)},Cle] (747) CuCl, metronidazole, air/MeOH ctt
[14-O{Cu(NCNMe,)},Clq] (748) CuCl,-2H,0/NCNMe, c*32
[14-O{Cu(4-(phenylethynyl)pyridine)},Clg] (749) Cudl, 4-(phenylethynyl)pyridine, air/CH,Cl,, 24 h c'
[14-O{Cu(pyridine-3-carbaldehyde)},Clg] (750) CuCl,-2H,0, pyridine-3-carbaldehyde/MeOH, CH,Cl,, 70 °C, 6 days B3
[14-O{Cu(2-ethylpyridine)},Clg] (751) CuCl,-2H,0, 2-ethylpyridine, air/MeOH, 50 °C, 1 h c
[14-O(Cu{N-(a-4-picolyl)piperidine}),Cls] (752) CuCl,-2H,0, N-(a-4-picolyl)piperidine/MeCN c®e
[14-O{Cu(OPEt;)}4Clg] (753) [PEt;CuCl],/CCly, CH,Cly, 4 days c*
[14-O{Cu(DENC)},Clg] (754) [{(DENC)CuCl},0,]/MeOH, CH,Cl, Jess
[14-O{Cu(benzimidazol)},Clg] (755) [Cu,Cl3(benzimidazol)s|Cl/EtOH 70
[14-O{Cu(dmf)},Cl¢] (756) [14-O{Cu(MeOH)},Cl¢] (737)/DMF Q!
[14-O{Cu(3-nonyl-8-fluoroimidazo[1,5-a]pyridine)},Clg] (757) QM
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Table 16 (Contd.)

Compound Reagents/conditions Method

[14-O{Cu(MeCN)},Clg] (707), 3-nonyl-8-fluoroimidazo[1,5-a|pyridine/
MeCN, 100 °C, 10 min

[1a-O{Cu(Amt)},Cl¢] (758) [Cu(a-CgPAmtHMe)(Cl)|[BF,], KHMDS/THF e
[14-O{Cu(nmp)}3(CuOH,)Clg] (759) CuCl, O,/nmp, H,0 F2
[14-O{Cu(Me,NH)};{Cu(dmso)}Cls] (760) Cu/Me,NH-HCI, DMSO, 50 °C, 2 h c*!
[14-O{Cu(Me,NH)},{Cu(MeOH)},Cl¢] (761) Cu/Me,NH-HCl, MeOH, 50 °C, 30 min c*
[14-O{Cu(thf)};(CuOH,)Clg],[1s-O{Cu(thf)},Cls], (762) CuCl,-2H,0, tetra-p-acetato-k®0:0"dicopper(i) dehydrate/THF, 24 h cH3
[14-O{Cu(urea)}s{Cu(thf)}Cls] (763) [14-O{Cu(MeOH)},Clg] (737), urea/THF, 2 h Q™
[4-phenylimidazolium][j,-O{Cu(4-phenylimidazole)};{CuCl} CuCl,-2H,0, 4-phenylimidazole/MeOH, 45 min c*e
Cle] (764)

[14-O(Cu{N-(a-4-picolyl)morpholine}),(Cu{N-(a-4-picolyl) CuCl,-2H,0, N-(a-4-picolyl)morpholine/MeCN, H,O che
morpholinium})