Material design of biodegradable primary batteries: boosting operating voltage by substituting the hydrogen evolution reaction at the cathode
Abstract
Transient primary batteries (TPBs) degrade after use without leaving harmful toxic substances, providing power sources for developing low-invasive and environmentally benign sensing platforms. Magnesium and zinc, both abundant on Earth, possess low anodic potentials and good biodegradability, making them useful as anode materials. However, molybdenum, a biodegradable metal, causes the hydrogen evolution reaction (HER) at the cathode, reducing the operating voltage of cells because of its low cathodic potential. In this review, we examine recent material designs to increase the operating voltage by introducing alternative electrochemical reactions at the cathode, including the oxygen reduction reaction, metal-ion intercalation into transition metal oxides, and halogen ionization, all of which have higher cathodic potentials than the HER. After discussing the characteristics, constituents, and demonstration of TPBs, we conclude by exploring their potential as power sources for implants, wearables, and environmental sensing applications.
- This article is part of the themed collection: Recent Review Articles