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Frame, metric and geodesic evolution in
shape-changing nematic shells

Cyrus Mostajeran, a Mark Warner *b and Carl D. Modes cd

Non-uniform director fields in flat, responsive, glassy nematic sheets lead to the induction of shells with

non-trivial topography on the application of light or heat. Contraction along the director causes metric

change, with, in general, the induction of Gaussian curvature, that drives the topography change. We

describe the metric change, the evolution of the director field, and the transformation of reference state

material curves, e.g. spirals into radii, as curvature develops. The non-isometric deformations associated

with heat or light change the geodesics of the surface, intriguingly even in regions where no Gaussian

curvature results.

1 Introduction

Nematic solids elongate or contract along their preferred
direction, the director n, in response to heat, light, pH change,
and solvent uptake. In the two directions perpendicular to n
there is an attendant contraction or elongation, either conserving
volume (elastomers) or not (glasses), except where the driver
is solvent exchange (elastomers) where there must be volume
change.

Although deformations are simple locally, if the director
field n(r) is non-uniform in the plane of a sheet-like sample, it
will in general be driven to develop Gaussian curvature (GC) to
avoid expensive distortion from the new, natural contracted/
elongated state. There is a strong motive to have non-uniform
fields and thus switchable Gaussian Curvature, since such
systems offer new forms of strong actuation where blocking
evolution to the new natural state allows one to harness the
attendant stretches; see for instance Ware et al.1

The induced Gaussian curvature can be specified in terms of
the new metric tensor, a = UT�U (with U the deformation
gradient to a new relaxed state arising from the stimulations
listed above). The metric specifies the changed intrinsic lengths
in the surface and the GC can be expressed in terms of the spatial
variation of a, that is, through the connection coefficients C.

The local thermo-optical deformation gradients are simple
and based on n

U = ln # n + l�nm # m (1)

where m is the direction in-plane that is perpendicular to n,
that is, the in-plane orthogonal dual of n. There is a contraction
lo 1 along n and elongation of l�n along m. The constant n � 1

2

has been termed the opto-thermal Poisson ratio2 in analogy
with the conventional Poisson ratio; it determines the response
perpendicular to a deformation induced along n.

The in-plane pattern for n(r) and m(r) is set at the time of
sample preparation. It can evolve under the action of U: where
n is non-uniform, there may additionally be local rotations R(r)
in order that the total deformation F = R�U remains locally and
globally compatible, assuming that the surface that evolves is
embeddable and smooth etc. The local rotations of the material
convect n and m to new values that constitute a new, diagonal
frame on which to base the next deformation and subsequent
further rotation. The metric induced is of course unchanged by
the rotations: a = FT�F = UT�RT�R�U = UT�U.

We investigate 3 critical aspects of these non-uniform
deformations:

(1) The metric of the space evolves as l changes. After every
increment of l and hence of a, should subsequent development
use the incremented a, or can one jump directly to a finite
deformation l, and simply take the metric that corresponds to
that Fl? We find that one can – the metric is not ‘‘dragged’’.
Equally, we will show that the rotations induced can be simply
compounded, even when the ls are large. We show this
property by a general argument based on a pair of successive
finite deformations.

(2) In circularly symmetric systems of general theoretical and
experimental interest, it is clear that there are deformation-induced
rotations of material directions, but that circles centred at the origin
must transform into circles. We offer an explicit geometric con-
struction that resolves these two apparently contradictory aspects,
and recover expressions for the rotations involved and for the
inflation of the intrinsic circles that define the system. We show
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how certain general curves, proto-radii, become geodesic radii on
distortion. We further put conditions on the director field that is
needed to generate only shells of revolution, and thereby give a
criterion for when circular symmetry breaks down.

(3) We consider geodesics on cones that result from the
response of circular, radial or, in general, logarithmic spiral
director distributions. They are different from those of cones
that are more conventionally constructed from flat sheets. The
former are the products of non-isometric transformations. The
curves in the flat space that are geodesics in the target space
differ, even though both types of cones have zero Gaussian
curvature, except at their tips.

2 Metric evolution and the compounding
of their intermediate states

We consider the evolution of the induced metric upon heating
of a sheet-like nematic sample with director field n(r). The
heating of the sample manifests as a gradually decreasing
l o 1, indicating further contractions along the director. As
the system evolves, both n and m can locally rotate with respect
to material lines across the surface of the sample. We analyse
this evolution by discretising it into a 2-step process: an initial
deformation Fl1

corresponding to a contraction by l1 along n
and mapping an initial surface S0 onto an intermediate surface
S1, followed by a second deformation Fl/l1

corresponding to a
contraction by l/l1 along the new evolved director field which
maps S1 onto a final surface S2, as depicted in Fig. 1.

Consider a mesh of curves C1 and C2 on a surface, initially
planar. In calculations of surface evolution, especially of circular
symmetry, these might typically be circles and either radii or radially
advancing spirals. One derives from these curves the corresponding
family of tangents t1 and t2. In the above examples mentioned, they
are (:r1, _y1) with :

r1 = 0 for circles (where � = d/ds and s is a unit speed
parametrisation), and (:r2, _y2) – the tangent to a spiral curve of
interest, for instance to a proto-radius. The original tangents, ti,
transform into new ones, t̃i, for i = 1, 2, as

Fl1
�ti � Rl1

�Ul1
�ti � t̃i (2)

where the rotation Rl1
is with respect to the given collection of

frames on the evolving surfaces. Rl1
is induced by the deformation

and its action on n gives ñ = Rl1
�n. Both R and n depend on r, and

likewise m̃ = Rl1
�m. We will see below the total deformation

naturally broken down (its polar decomposition) into a Rl1
�Ul1

since Ul1
is delivered diagonal in its n, m frame. The rotation we

determine below convects n and m and provides us with a new
frame where, by construction, the subsequent U is diagonal.

This subsequent deformation Ul/l1
(ñ) now occurs, by a

further factor l/l1 which is along the current director ñ rather

than the original n. The current mesh ~Ci will further deform. We
will need, for instance, directional relationships between further

deformed meshes using the metric al=l1ð~nÞ ¼ UT
l=l1
�Ul=l1 result-

ing from the further deformation l/l1 along the current director ñ:

t̃T
2�al/l1

(ñ)�t̃1. (3)

For instance if (3) = 0, then the initial mesh of curves C1 and C2

have evolved under two, compounded deformations into normal
coordinates. We need to be reassured, here by explicit construction,
that the evolution of the metric, so central to these calculations, is
being correctly accounted for during successive deformations
where it too is evolving.

One can re-write eqn (3):

tT2 �UT
l1
� RT

l1
� l=l1ð Þ2~n� ~nþ l=l1ð Þ�2n ~m� ~m
� �

� Rl1 �Ul1 � t1:

(4)

Now one can see how the intermediate state after deformation

l1 is immaterial: RT
l1

and Rl1
act (forward and backward respec-

tively) on the ñ and m̃ to restore them to n and m respectively.
Recall that Fl1

is based on n and m, as is now the central part of
eqn (4) since it has become (l/l1)2n # n+ (l/l1)�2nm # m. Then
the F and FT can be contracted with the central part to give
(l2n # n + l�2nm # m) � al(n), with the result

tT
2�al(n)�t1. (5)

We have thus shown that, although the metric evolves as the
directors are convected by deformations, it is sufficient to
consider even a non-linear deformation to be in terms of the
initial state and the metric appropriate to any large deformations
based on the initial state. That is, the frame is ‘‘dragged’’ but not to
any fundamental effect. Conversely, the compounding of infinite-
simal deformations and rotations to give, say, the compounding of
two large deformations rules out any higher order differential
effects in the metric evolution.

It should be noted that a global deformation map
F: Si - Sf, from an initial surface Si to a final surface Sf,
carries by contrast much more information than is provided by
the metric formalism and isometric embedding approach taken
in Mostajeran,3 for instance. An analysis based purely on the
metric formalism typically yields the surface that is formed
following the stimulation of a given director field by solving an
isometric embedding problem based on the induced metric,
but it does not specify where individual points from the initial
surface end up on the final surface. Generally, it is difficult to

Fig. 1 Compatibility of local deformations. The director field n and its
in-plane orthogonal dual m remain orthogonal throughout the evolution
as they locally rotate with respect to material lines across the surface.
Finite deformations compound as expected.
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determine such a global deformation even when the final
surface has been identified. However, in Section 3 we provide
a detailed picture of the movement of individual points during
the course of the deformation for the important class of circularly
symmetric director patterns, which typically result in surfaces of
revolution. One needs to consider trajectories and their length
changes, as in ref. 5. We use such methods to give a prescription
in Section 5 for when a circularly symmetric director field n(r) will
give a surface of revolution, rather than a ruffled surface.

3 Circular symmetry and the rotations
attendant on deformations

Circularly symmetric director patterns, generically spirals,
generate deformations based on local frames of n and m. The
director fields themselves will evolve, which we now examine,
unless they were the special cases of radii and circumferences.
By symmetry, deformations must take circles to circles, albeit in
general inflated or deflated. At a point (r,y) the director has an
angle a(r) with the radial direction, r̂; see Fig. 2(a). This angle
varies with radius except for the special case of logarithmic
spirals of n, where a = constant and nematic contractions yield
simple cones.2,4

Consider, Fig. 2(b), in a frame based on n and m, depicting a
contraction by l along n. It fans out away from n the in-material
vectors t and r̂ to Ul�t and Ul�r̂ (no longer unit vectors); the
angle g between Ul�t and t is defined in the figure. Thus

Ul(n(r))�t = pRg�t, (6)

with p the degree of circumferential deflation/inflation, and Rg

a rotation by g. Since points on circles remain on circles, then
clearly the action from neighbouring points gives a local
angular convection to restore Ul�t to tangency, in general along
with a rotation of the circle as a whole, so the point at y evolves
to y0; see Fig. 2(c). The next section gives explicit forms for
y0 � y by considering how special curves (‘‘proto-radii’’) in the
reference state evolve to be actual radii in the target state.

The angle between Ul�t and n became p/2 � a + g after
deformation. As Ul�t (with all other in-material vectors) is
rotated by �g to make it again a tangent (with rescaling to
restore it to being a unit vector), then the current director n0 is
now at an angle a � g to the new radial direction. Note that this
latter, radial direction was not originally so, but evolved from
its pre-image (the proto radius) to be a radius.

Expanding out eqn (6) in the original frame to get the
fanning out, one has:

l(n(r)�t)n + l�n(m(r)�t)m = pRg�t. (7)

The projections of t onto n and m were respectively sa and
�ca (with s � sin, c � cos). Multiplying both sides by R�g, the
vectors n and m become n0 = R�g�n and m0 = R�g�m; see Fig. 2(c),
but for the moment delay considering the rotation by y0 � y so
the restored tangent in Fig. 2(c) is denoted by the original t:

lsan0 � l�ncam0 = pt. (8)

Contracting this equation with the unit tangent t and with the
unit radial vectors gives respectively:

lsasa�g + l�ncaca�g = p (9)

lsaca�g � l�ncasa�g = 0. (10)

The latter relation gives the new director angle, which can be
injected into the former expression for p(r) to give the inflation.
In summary

ta�g = l1+nta (11)

or

cot g = (b2 + l+n)/(b(1 � l1+n)) (12)

pðrÞ ¼ l�n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
caðrÞ2 þ l2ð1þnÞsaðrÞ2

q
; (13)

where b = cot a. The inflation depends on radius according to
the initial director angle a(r) to the radial direction, and
depends on the deformation. Of special interest is the location
of r1(l) where p = 1, for there the circumference is unchanging
and the evolved shell can be anchored to an unchanging
circumferential support without strain-mismatch. At that con-

dition, one has sa1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2n

1� l2ð1þnÞ

r
which can be solved then for

r1(l). This result shows that the anchoring condition (3.16) of
Mostajeran et al.5 is completely general and not simply for
logarithmic spiral systems.

Rotations can be seen explicitly to compound, as they do via
metric considerations:

tanða� dÞ ¼ l
l1

� �1þn
tanða� ðd� gÞÞ

¼ l
l1

� �1þn
l1þn1 tanðaÞ ¼ l1þn tanðaÞ

(14)

where l1 takes the system from a - a � (d � g), and then l/l1

from a � (d � g) to a � d, that is a further g. Intermediate steps,
l1 with angular advancement (d � g), are seen to be inessential.

Fig. 2 (a) A section of a circle (dotted) in the initial (flat) space before
distortion, showing its tangent t. The director n(r) is at angle a(r) to the
radial direction, r̂. (b) A contraction by a factor l along n rotates (and
distorts) general vectors, e.g. t and r̂, towards the perpendicular m. For
instance, the tangent t was rotated through angle g. (c) By symmetry,
circles must transform overall into circles (here shown as deflated).
Through a rotation R�g by �g, the vector Fl�t is restored to tangency and
the director, n’, is now at angle a � g to the radial direction. In general,
material points r rotate to a new angle y0. In the text we delay discussing
the extra rotation, and mark the restored tangent simply as t.
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4 Evolution of director field integral
curves and of proto-radii

The integral curve of the director field has as its tangent the
director itself. For the simple illustration taken, cones, the
tangent has a constant angle, a, to the radial direction. The
integral curve is thus a logarithmic spiral

r(y) = r0eb(y�y0) with b = cot a. (15)

This angle was reduced to a � g with tan(a � g) given by
eqn (11). Since a here is independent of r, then so is g and thus
the new director integral curve is also a log spiral, now with a
b0 = cot(a � g) = b/l1+n, a more rapidly outward spiralling curve.

One can similarly determine the curve, G2, of the reference
state proto-radius that will become the target space radius, G2

0,
the line that meets circles at right angles. Take a reference state
circle to be G1, and its image after the action of F to be the
in/deflated circle G1

0. The meeting at right angles in the target
space gives the reference state condition3,5

t2�a�t1 = 0 (16)

where t1 = (0,1) and t2 = (dr2/ds,dy2/ds) are the tangents, in
circular coordinates, to G1 and G2. They have a unit speed
parametrisation by s. In circular coordinates a is:

arr ¼ l2 þ l�2n � l2
� �

sin2ðaÞ;

ary ¼ ayr ¼ �
r

2
l�2n � l2
� �

sinð2aÞ;

ayy ¼ r2 l�2n � l�2n � l2
� �

sin2ðaÞ
	 


:

(17)

[The last component of a governs azimuthal changes and taken
as ayy/r

2 gives the square of the inflation, p2(r).] The condition
(16) reduces to (dropping the subscript 2):

0 ¼ ayrdr=dsþ ayydy=ds

dr=dy ¼ � ayy

ayr
¼

2r 1� ð1� l2ð1þnÞÞ sin2 a
� �
ð1� l2ð1þnÞÞ sinð2aÞ :

(18)

The argument thus far is completely general for any a(r). For the
log spiral case, a = constant, integration is trivial:

r = r0ec(y�y0). (19)

The proto-radius is a log spiral characterised by

c ¼ cotðbÞ ¼ l2ð1þnÞ þ b2

b 1� l2ð1þnÞð Þ (20)

with b the angle the tangent makes with the radius before
deformation. One can easily show that c a b, that is, the
integral curves of director and proto-radius differ.

These curves are illustrated in Fig. 3. The extent of bulk
rotation is now clear: points on the proto-radius G2 rotate

through an angle Dy ¼ 1

jcj lnðrÞ to be on the radius G2
0 after

distortion. The rotation is the sum of the rotations that occur at
each element r0 inside the current radius.

5 Condition on a(r) for circularly
symmetric shells

A circularly symmetric director field does not necessarily lead to
a circularly symmetric shell on distortion. For instance a purely
radial field subjected to heating develops in-material radii that
become shorter and circumferences longer such that their ratio
is greater than 2p: ruffles develop that have been termed ‘‘anti-
cones’’.2 In general, spirals with an a(r) can also develop in-material
radii that are too short in comparison to the circumferences that
arise, leading to loss of circular symmetry. Consider Fig. 4 where
clearly 2pl1 4 l2 and ruffles have not arisen. However, the condition
for the preservation of circular symmetry is local, namely that the
increments in the shell in considering what corresponds to
r 7!rþ dr in the reference state must satisfy dl2 o 2pdl1, which
is the case in the figure. The case of dl2 = 2pdl1 would
correspond to the addition to dl1 being flat, and dl2 4 2pdl1

would mean that surplus circumference is generated and can
only be accommodated by ruffling, that is by a loss of circular
symmetry.

The proto-radius that evolves to the in-material radius of
length l1(r) is governed by eqn (16) and (18). For this curve it

is shown5 that dl1=dr ¼ l1�nr
� ffiffiffiffiffiffiffiffiffiffiffiffi

ayyðrÞ
p

. A circumference at r

in/deflates to 2p
ffiffiffiffiffiffiffiffiffiffiffiffi
ayyðrÞ

p
. The latter result is elementary since

Fig. 3 The original log spiral director n(r) (red online) of constant angle
a = 1.4 rad, on a deformation of l = 0.7 with n = 2, transforms to the new
director field n 0(r) (blue online), also log spirals, but with larger angle. The
original a angle between the tangent to the director’s integral curve
tangent and a radius is shown as a (black). Transformed curves are shown
in-material but on the same diagram for convenience. The initial field is
shown for r(y = 0) = 1 to an r(y = 2p) = e2pb, that is for one revolution of
the spiral, between the light dotted unit circle and the heavy dotted
circle, the reference space trajectory G1. The proto-radius G2 is the
integral curve r(y) that becomes an actual radius G2

0, marked r 0(y). It
started at r = 1 (open dot), but due to radial inflation starts further out
(open dot). The proto-radius’ end point (full dot) where it meets
G1 transforms to the end point of G2

0 (full dot) where it meets the
transformed circle G1

0.
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we are dealing with length changes in the y-direction. Taking its
derivative and taking the above condition for circular symmetry
one obtains:

2l1�nr4 dayy=dr

2l1þn4 2� 2 1� l2ð1þnÞ
� �

sin2 a� 1� l2ð1þnÞ
� �

r sinð2aÞda
dr
:

(21)

One can immediately recover the condition4 separating cones
and anti-cones for log spirals n(r) where a = const., and also
recover the condition on the tuning parameter c for the a(r)
generating spherical spindles and hyperbolic cones.5 For
instance, for a constant K 4 0 the director field

aðrÞ ¼ 1

2
arccos � Kr2

2 l�2 � l2nð Þ þ c

� �
(22)

introduced in ref. 5 defines a spiral nematic pattern which
encodes constant Gaussian curvature K 4 0 on the domain on
which (22) is defined. The parameter c is a tuning parameter that
can be used to adjust the radius on which the pattern is defined.
The metric component ayy for the director field (22) takes
the form

ayy ¼
r2

2
l�2n þ l2 þ c l�2n � l2

� �
� 1

2
l2�2nKr2

� �
; (23)

and upon substitution into (21) yields

l2�2nKr2 + 2l1�n � l�2n � l2 � c(l�2n � l2) 4 0,
(24)

which must be satisfied for all values of r 4 0 in the domain of
a(r) to result in a surface of revolution. This is clearly the case if
and only if (24) is satisfied at r = 0. That is, precisely if

co
2l1�n � l�2n � l2

l�2n � l2
¼ 1� 2

1þ l1þn
; (25)

which is in agreement with the condition5 on c for a spherical
spindle of constant positive curvature K to result from the
director field specified by (22).

6 Evolution of geodesics

Considering how points on a nematic surface move as the
surface evolves under heating leads to an interesting observation
concerning geodesics on the surface. Specifically, that material
lines that form geodesics on an initial surface will generally not
remain geodesics as the surface evolves. This is certainly to be
expected when the induced metric is non-Euclidean, since in
such cases the intrinsic geometry of the resulting surface is
different. The more remarkable result is that a geodesic material
line may not remain a geodesic under evolution even in cases
where the induced metric is flat, i.e. does not generate Gaussian
curvature.

We highlight this feature through a simple example involving
the formation of cones from an initially flat surface by 2 different
methods. In the first method, we simply cut out a sector from a
circular disc and join the new edges of the remaining surface to
form a cone by bending, as shown in Fig. 5. This is possible since
a cone has zero Gaussian curvature at every point except for its
tip, and thus away from this singular point has the same intrinsic
geometry (Euclidean) as the plane by Minding’s theorem. In
this method, geodesics in the initially flat disc will map onto
geodesics on the resulting cone. The second method is based
on heating an initially flat nematic disc patterned by an
azimuthal director field, which will form a cone with opening
angle f = sin�1(l1+n) as explained in ref. 4.

Now for a given metric ds2 = aabdxadxb, the geodesics satisfy
the Euler–Lagrange equations of the functional

I ½x� ¼
ð
Lðx; _xÞdt ¼

ð
aabðxÞ _xa _xbdt: (26)

For the standard Euclidean metric ds2 = dx2 + dy2 = dr2 + r2dy2,
the Euler–Lagrange equations in polar coordinates are

d

dt

@L

@ _r
¼ @L
@r
) 2€r ¼ 2r _y2 (27)

d

dt

@L

@ _y
¼ @L
@y
) r2 _y ¼ C (28)

where C is a constant. Thus, the straight line geodesics in polar
coordinates arise as solutions to the system

r2 _y ¼ C;

€r ¼ C2
�
r3:

8<
: (29)

Fig. 4 A circularly symmetric shell with an in-material radius of length l1(r)
extending from the pole (dot) to the current shell edge (dot), where the
circumference is l2(r). Recall that the current radius has evolved from a
pre-image (proto-radius) in the reference state extending from the centre
of a spiral director field out to an r. An addition dl1 to the in-material radius
leads to an increased circumference l2 + dl2.

Fig. 5 Forming a cone by bending a flat circular disc with a missing
sector. Straight lines on the disc map to geodesics on the cone.
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On heating the azimuthal pattern, the induced metric becomes
ds2 = l�2ndr2 + l2r2dy2 and the Lagrangian in (26) is modified to
L(r,y,:r, _y) = l�2n:r2 + l2r2 _y2. The geodesic equations now take
the form

r2 _y ¼ C;

€r ¼ l2ð1þnÞC2
�
r3:

8<
: (30)

The solutions to this system are curves on the initial disc that
become geodesics on the resulting cone. Clearly, we see that the
systems in (29) and (30) are distinct and generally give rise to
different solutions unless C = 0. That is, straight lines on the
flat disc will generally not map onto geodesics on the resulting
cone, even where no Gaussian curvature is induced in the
process. Indeed we have also seen, in the log spiral variant of
the evolution to cones, that a resultant geodesic in the form of a
radial line originates as a log spiral in the reference state which
is definitely not an initial geodesic.

7 Discussion

The evolution of the shape of a nematic surface upon stimulation
is governed by the metric induced by local deformations
encoded by the director field. The stimulation of the sample
is not instantaneous, but is achieved through a continuous
process such as heating, during which the surface undergoes
a continuous family of deformations. The director field itself
also evolves during this process and undergoes local rotations
with respect to material lines across the evolving surface. Due to
the anisotropic nature of nematic surfaces, the question of
compatibility of infinitesimal deformations within the metric
framework is a non-trivial one that needs to be considered. In
this work, we have addressed this concern and demonstrated
that the evolution of the surface and director field is indeed
consistent with such a framework. It should be noted that this
issue does not arise for materials which undergo local expansion/
contraction in a conformal or isothermal manner in response
to stimulus, such as responsive hydrogels,6 since there is no

potential ‘‘frame-dragging’’ effect in such materials. Furthermore,
while it is possible to express a metric associated with a nematic
director field in isothermal form through a suitable change of
coordinates,7 the necessary coordinate transformation is depen-
dent on l and hence is not valid throughout the evolution. By
considering the local rotations of the director field during the
evolution of the deformation of a nematic surface, we also obtain a
description of how individual material points move on the evolving
surface for the class of circularly symmetric director fields which
form surfaces of revolution.
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