A CRISPR/Cas12a-based competitive aptasensor for ochratoxin A detection†
Abstract
The serious contamination of ochratoxin A (OTA) in agricultural products has promoted the development of rapid, sensitive, and selective analytical methods for OTA monitoring. We demonstrated a competitive aptasensor for OTA detection using CRISPR/Cas12a as an effective signal amplifier. OTA competes with complementary DNA of the aptamer on the microplate to bind to the aptamer. Streptavidin bridges the biotinylated aptamer and biotinylated activator to convert the OTA input into Cas12a activation, which cleaves fluorescent DNA reporters. Under optimized experimental conditions, the aptasensor was demonstrated to work well for sensitive detection of OTA, with a linear range from 0.5 nM to 62.5 nM and a detection limit of 0.5 nM. Moreover, our method not only exhibits high selectivity, but also has satisfactory anti-interference ability against complex sample matrices. Taken together, the CRISPR/Cas12a-based competitive aptasensor offers a simple and sensitive platform for OTA detection, and it holds great promise for food security monitoring.
- This article is part of the themed collection: Analytical Methods HOT Articles 2024