Piezoelectric materials for anti-infective bioapplications
Abstract
Bacterial infection severely limits the effectiveness of biomaterials for tissue repair, posing a major challenge to modern medicine. Despite advances in novel antibiotics and their application in treatment, challenges remain in clinical practice. To address this issue, biomaterials are engineered to achieve desirable anti-infective performance and compatibility via adjusting their surface physicochemical properties. Recently, numerous studies on piezoelectric materials have been performed for anti-infective and regenerative therapies, but a comprehensive review is still lacking. This article provides a brief overview of the different types of piezoelectric materials and their characteristics. Building on this understanding, this review highlights the antibacterial mechanisms including orchestrating electric field and optimizing piezoelectric catalysis, which promote infective tissue regeneration, as well as discusses the anti-infective bioapplication of piezoelectric materials. Furthermore, this review concludes with perspectives into the challenges and future research directions of piezoelectric biomaterials.
- This article is part of the themed collection: Journal of Materials Chemistry B Recent Review Articles