Issue 5, 2024

Sub-100 nm carriers by template polymerization for drug delivery applications

Abstract

Size-controlled drug delivery systems (DDSs) have gained significant attention in the field of pharmaceutical sciences due to their potential to enhance drug efficacy, minimize side effects, and improve patient compliance. This review provides a concise overview of the preparation method, advancements, and applications of size-controlled drug delivery systems focusing on the sub-100 nm size DDSs. The importance of tailoring the size for achieving therapeutic goals is briefly mentioned. We highlight the concept of “template polymerization”, a well-established method in covalent polymerization that offers precise control over molecular weight. We demonstrate the utility of this approach in crafting a monolayer of a polymer around biomolecule templates such as DNA, RNA, and protein, achieving the generation of DDSs with sizes ranging from several tens of nanometers. A few representative examples of small-size DDSs that share a conceptual similarity to “template polymerization” are also discussed. This review concludes by briefly discussing the drug release behaviors and the future prospects of “template polymerization” for the development of innovative size-controlled drug delivery systems, which promise to optimize drug delivery precision, efficacy, and safety.

Graphical abstract: Sub-100 nm carriers by template polymerization for drug delivery applications

Article information

Article type
Review Article
Submitted
04 ное 2023
Accepted
27 фев 2024
First published
29 фев 2024
This article is Open Access
Creative Commons BY-NC license

Nanoscale Horiz., 2024,9, 693-707

Sub-100 nm carriers by template polymerization for drug delivery applications

P. K. Hashim and S. S. M. A. Abdrabou, Nanoscale Horiz., 2024, 9, 693 DOI: 10.1039/D3NH00491K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements