A wealth of structures for the Ge2H2+ radical cation: comparison of theory and experiment†
Abstract
Five structures of Ge2H2 and Ge2H2+ are investigated in this study. Optimized geometries at the CCSD(T)/cc-pwCVQZ-PP level of theory were obtained. Focal point analyses were performed on these optimized geometries to determine relative energies using the CCSD(T) method with polarized basis sets up to quintuple-zeta. Energy corrections include full T and pertubative (Q) coupled-cluster effects plus anharmonic corrections to the zero-point vibrational energy. Relative ordering in energy from lowest to highest of the five Ge2H2+ structures is butterfly, germylidene, monobridged, trans, then linear. In neutral Ge2H2, the monobridged structure lies lower in energy than the germylidene structure. Fundamental vibrational frequencies and IR intensities were computed for the minima at the CCSD(T)/cc-pwCVTZ-PP level of theory to compare with experimental research. Partial atomic charges and natural bonding orbital analyses indicated that the positive charge of Ge2H2+ is contained in the region of the Ge–Ge bond.
- This article is part of the themed collection: PCCP 25th Anniversary Issue