Antimony doped tin(iv) hybrid metal halides with high-efficiency tunable emission, WLED and information encryption†
Abstract
Although single-component white light emitting perovskites have emerged as a new star material with great potential in solid-state lighting, the synthesis of lead-free halide perovskites with high efficiency and high color rendering index (CRI) remains challenging. Here, we report a series of zero-dimensional antimony-doped tin(IV)-based hybrid metal halides (C13H30N)2SnCl6:x%Sb with wavelength-dependent tunable emission. (C13H30N)2SnCl6:20% Sb produces a strong white emission upon excitation at 325 nm, with nearly 100% photoluminescence quantum yield (PLQY), and produces bright red emission with 80.98% PLQY under 380 nm excitation at room temperature (RT). This profile shows that there are two types of emission centers, resulting from high-efficiency dual emission bands, one out of the self-trapped exciton (STE) of 3P1 to 1S0 from SbCl6 octahedra with green emission at 510 nm, and another due to the radiative recombination of the STE of 3P1 to 1S0 from the SbCl5 pyramid with broad red emission around 666 nm, which also contain some DAP (D-donor, A-acceptor, P: pair) transitions around 740 nm between Sb and Sn sites. The single-component light-emitting diode (LED) device based on (C13H30N)2SnCl6:20% Sb has an excellent color rendering index as high as 96.7, and the corresponding color coordinates are (0.346, 0.380). The excitation wavelength-dependent tunable emission profile makes (C13H30N)2SnCl6:x%Sb a high-performance material for applications in single component white light-emitting diodes (WLEDs), anti-counterfeiting, information encryption, and flexible lighting displays.
- This article is part of the themed collections: Journal of Materials Chemistry C HOT Papers, 2024 Journal of Materials Chemistry C Lunar New Year collection and 2023 Journal of Materials Chemistry C Most Popular Articles