Solvent-controlled synthesis of an Al12-oxo molecular ring and Al24-oxo truncated metallo-cube†
Abstract
Highly symmetrical molecules with beautiful geometries are ubiquitous in nature. It has inspired creative ideas of the perfect combination of geometry and molecular structural chemistry. Some metal clusters with regular geometric polyhedra have been reported, but such highly symmetric polyhedra for Al-oxo clusters are really scarce on account of the fast hydrolysis of Al3+ ions. Herein, a [Al12(CH3O)24(NAP)12]·4DMF·2H2O·2CH3OH (Al12, NAP− = 2-naphthoic acid) nanoring was synthesized by the solvothermal reaction of AlCl3·6H2O, 2-naphthoformic acid (HNAP) and triethylamine (Et3N) in CH3OH and DMF. Interestingly, the regulation from ring-shaped Al12 to [Al24(OH)32(CH3O)22(CH3OH)2(NAP)12]·6Cl·2H2O·2CH3OH (Al24) metallocage is realized by only changing the reactive solvents. The Al24 metallocage can be seen as one of 13 Archimedean polyhedra, a truncated cube composed of eight Al3 triangles and six Al8 octagons by sharing vertical Al3+ ions. In addition, high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) reveals that the metallic skeletons of Al12 and Al24 can be maintained stable in CH3OH and CH2Cl2. Furthermore, Al12 and Al24 emit blue luminescence and exhibit photocurrent responses under LED light illumination.
- This article is part of the themed collection: FOCUS: Metal and Metal-Containing Clusters