Insights into high-entropy material synthesis dynamics criteria based on a thermodynamic framework
Abstract
High-entropy materials (HEMs) have attracted increasing research interests owing to their structural diversity and great potential for regulation. Numerous HEMs synthesis criteria have so far been reported but most are based on thermodynamics while a guiding basis for the synthesis of HEMs is lacking, resulting in many synthesis problems. Based on the overall thermodynamic formation criterion of HEMs, this study has explored the principles of the synthesis dynamics required based on this criterion and the influence of different synthesis kinetic rates on the final products of the reaction, filling the gap suggesting that thermodynamic criteria cannot guide the specific process changes. This will effectively provide more specific guidelines for the top-level design of material synthesis. By considering various aspects of HEMs synthesis criteria, new technologies suitable for high-performance HEMs catalysts were extracted. Also, the physical and chemical characteristics of the HEMs obtained from actual synthesis can be predicted in a better way, playing an important role in the personalized customization of HEMs with specific performance. Future development directions of HEMs synthesis were prospected for possible prediction and customization of HEMs catalysts with high performance.
- This article is part of the themed collection: Recent Review Articles