Electrochemical transformation of d,l-glutamic acid into acrylonitrile†
Abstract
Acrylonitrile is an important industrial platform chemical mainly produced by the SOHIO process using fossil propylene, ammonia, and air as substrates. In view of climate change, ingenuity is needed to become independent of fossil resources and to achieve sustainable production of basic chemicals such as acrylonitrile. One opportunity is to use biogenic substrates that are converted by electrolysis. Using electrons as oxidants is an environmentally friendly alternative to stochiometric amounts of molecular oxidising agents that generate waste after usage. Here, we present a new route for the electrochemical synthesis of green acrylonitrile using the biogenic amino acid D,L-glutamic acid as a substrate by utilising electro-oxidative decarboxylation and non-Kolbe electrolysis. By optimising the electro-oxidative decarboxylation, the number of steps was successfully reduced, resulting in a two-step process for the formation of the monomer. Acrylonitrile was synthesised with a maximum yield of 41.1%.
- This article is part of the themed collections: Advances in Electrosynthesis for a Greener Chemical Industry and 2023 Green Chemistry Hot Articles