Issue 23, 2023

Intracellular regulation of zinc by metal–organic framework-mediated genome editing for prostate cancer therapy

Abstract

Normal prostate tissues generally exhibit a higher level of zinc to maintain their special “citrate-producing” metabolism, while its level dramatically decreases during prostate tumorigenesis. Despite the significant antitumor effects, the intracellular accumulation of zinc in prostate cancer cells also promotes the expression of ZNT1, which in turn results in the efflux of zinc and attenuated cytotoxicity against cancer cells. To solve the dilemma, we developed a 2-[3-(1,3-dicarboxypropyl)ureido]pentanedioic acid (DUPA)-decorated zeolitic imidazolate framework-8 (ZIF8), which is able to load plasmid DNA encoding the Cas9 editor and single-guide RNA to form Cas9@ZIF8-DUPA nanocomplexes. The intracellular delivery of Cas9@ZIF8-DUPA simultaneously increases the level of zinc and inhibits the ZNT-1 function by disrupting the SLC30A1 gene to prevent the efflux of zinc in prostate cancer cells. Due to the high affinity between DUPA and the prostate-specific membrane antigen, Cas9@ZIF8-DUPA nanocomplexes exhibit excellent prostate tumor-targeting ability. The internalization and degradation of Cas9@ZIF8-DUPA not only release free zinc and Cas9 editors, but also reduce zinc efflux through Cas9-mediated genome editing that disables the function of ZNT1. As a result, Cas9@ZIF8-DUPA nanocomplexes exhibit significant antitumor activity and extended survival in the mouse model bearing prostate tumors. The current platform offers an alternative therapeutic strategy and holds tremendous translational potential as an anticancer nanomedicine for prostate cancer treatment.

Graphical abstract: Intracellular regulation of zinc by metal–organic framework-mediated genome editing for prostate cancer therapy

Associated articles

Supplementary files

Article information

Article type
Paper
Submitted
13 яну 2023
Accepted
27 юни 2023
First published
17 юли 2023

Biomater. Sci., 2023,11, 7556-7567

Intracellular regulation of zinc by metal–organic framework-mediated genome editing for prostate cancer therapy

Y. Xue, H. Tang, G. Chen, Y. Pan, D. Li and Y. Ping, Biomater. Sci., 2023, 11, 7556 DOI: 10.1039/D3BM00002H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements