Can perovskites be efficient photocatalysts in organic transformations?
Abstract
Designing and developing efficient, robust, and cost-effective photocatalysts that can support a broad scope of chemical bond formations (C–C, C–N, C–O, and C–P) is urgently needed when thinking about the emergence of viable technologies. The quest for sustainable materials for use in photocatalytic reactions remains challenging. Since photocatalysis relies on charge generation and transfer processes, and perovskites with unique optoelectronic properties have captured tremendous attention due to their unrivaled potential arising from their high absorption coefficients and long charge carrier diffusion lengths. To date, most research has centered on skyrocketing PCEs of around 25%, but there is vast scope for using perovskites in photocatalytic reactions, as both photovoltaic and photocatalysis technologies are based on the same principles, where exciton formation, charge separation, and charge transfer occur. Among the perovskites with different dimensionality, the ease of tuning the bandgap, the ease of processing, and air tolerance have advanced perovskite nanocrystals (PNCs) for a broad scope of organic photocatalysis reactions. Moreover, the stability of inorganic perovskite nanocrystals in organic solvents paves the way for perovskites to be used as photocatalyst materials for significant organic transformations. This perspective provides a comprehensive review of photocatalysts based on PNCs for various organic transformations.
- This article is part of the themed collection: Journal of Materials Chemistry A Recent Review Articles