Decisive role of non-rare earth metals in high-regioselectivity addition of μ3-carbido clusterfullerene†
Abstract
Endohedral clusterfullerenes featuring encapsulation of metal clusters which transfer electrons to the outer fullerene cages show intriguing chemical properties different from empty fullerenes. Despite the extensive studies on the chemical properties of empty fullerenes, especially C60, chemical functionalization of endohedral clusterfullerenes has been less explored, and previous reports are primarily limited to the well-known metal nitride and carbide clusterfullerenes. Herein, we report the first chemical functionalization of an emerging endohedral clusterfullerene μ3-carbido clusterfullerene (abbreviated as μ3-CCF) bearing central μ3-C and Ti(IV) atoms forming a TiC double bond. A μ3-CCF Dy2TiC@Ih-C80 is synthesized, and its molecular structure is unambiguously determined by single-crystal X-ray diffraction for the first time. A photochemical cycloaddition reaction of Dy2TiC@Ih-C80 with 2-adamantane-2,3-[3H]-diazirine (abbreviated as AdN2) is then carried out and only one monoadduct Dy2TiC@Ih-C80-Ad is obtained, indicating its high regioselectivity. According to the X-ray single-crystal structure of Dy2TiC@Ih-C80-Ad, the Ad moiety selectively attacks the [6,6]-bond (conjunction of two fused hexagons), which is adjacent to the Ti4+ ion instead of the two Dy3+ ions, affording a [6,6]-open addition pattern. Theoretical calculations unveil that the Ti(IV) ion plays a decisive role in high regioselectivity, and the formation of [6,6]-open Dy2TiC@Ih-C80-Ad is thermodynamically preferred. Contrarily, a similar reaction of a Ti(III)-containing nitride clusterfullerene Y2TiN@C80 with AdN2 is predicted to generate a different type of adduct with the addition sites adjacent to the Y3+ ion instead of the Ti3+ ion. This reveals the peculiarity of the chemical property of μ3-CCF resulting from the existence of the non-rare earth metal Ti with a high oxidation state.
- This article is part of the themed collection: FOCUS: Metal and Metal-Containing Clusters