Fluorogenic hyaluronan nanogels for detection of micro- and nanoplastics in water†
Abstract
Environmental pollution from plastics is exponentially increasing due to human activities. While larger microplastics can be detected with various methods, retrieving micron-sized fragments and nanoplastics remains challenging. Yet, these smaller-sized plastics have been raising considerable toxicological concern. Here, we show that a poorly emissive hyaluronan functionalized with rhodamine B (HA–RB) adheres with high affinity to various microplastic surfaces, becoming brightly emissive. Micro- and nanoplastics (MNPs) can be successfully detected with size as small as the diffraction limit of confocal microscopy (ca. 250 nm). FLIM images show that the fluorescence lifetime of the dye moieties changes according to the plastics, making possible a discrimination of the nature of MNPs based on lifetime. HA–RB, compared to previous reports, eliminates false-positive results caused by formation of dye aggregates, resulting in a higher S/N ratio which allows the unequivocal detection of nano-sized fragments.
- This article is part of the themed collections: Nanocircular Economy Papers 2014-2022 and SDG14: Life Below Water – Marine Litter (Plastics and Pollution)