Issue 11, 2022

Single-cell droplet microfluidics for biomedical applications

Abstract

Single-cell manipulation and analysis is critical to the study of many fundamental biological processes and uncovering cellular heterogeneity, and presents the potential for extremely valuable applications in biomedical fields, including neuroscience, regenerative therapy, early diagnosis, and drug screening. The use of microfluidic technologies in single-cell manipulation and analysis is one of the most promising approaches and enables the creation of innovative conditions that are impractical or impossible to achieve using conventional methods. Herein, an overview of the technological development of single-cell droplet microfluidics is presented. The significant advantages of microfluidic droplet technology, the dynamic parameters affecting droplet production, and the geometric structures of microfluidic devices are emphasized. Furthermore, the progress to date in passive and active droplet generation methods based on microfluidics and various microfluidic tools for the production of single-cell droplets and hydrogel microspheres are summarized. Their key features, achievements, and limitations associated with single-cell droplet and hydrogel formation are discussed. The recent popularized applications of single-cell droplet microfluidics in biomedicine involving small-molecule detection, protein analysis, and drug screening and genetic analysis of single cells are explored too. Finally, the challenges that must be overcome to enable future applications in single-cell droplet microfluidics are highlighted.

Graphical abstract: Single-cell droplet microfluidics for biomedical applications

Article information

Article type
Critical Review
Submitted
24 дек 2021
Accepted
08 апр 2022
First published
09 апр 2022
This article is Open Access
Creative Commons BY-NC license

Analyst, 2022,147, 2294-2316

Single-cell droplet microfluidics for biomedical applications

D. Liu, M. Sun, J. Zhang, R. Hu, W. Fu, T. Xuanyuan and W. Liu, Analyst, 2022, 147, 2294 DOI: 10.1039/D1AN02321G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements