Issue 2, 2021

Emerging investigator series: bacteriophages as nano engineering tools for quality monitoring and pathogen detection in water and wastewater

Abstract

Waterborne bacterial pathogens are a major public health concern worldwide, taking many lives and imposing huge economical burden. Rapid and specific detection of pathogens and proper water quality monitoring is an urgent need for preventing the spread of bacterial pathogens and disease outbreaks. Bacteriophages, or phages for short, are the most abundant and ubiquitous biological entities on our planet. These bacterial viruses exist in every niche of the biosphere and target their host bacteria with high specificity. Phages can be employed as bio-probes to not only detect a pathogen of interest, but differentiate between viable and non-viable bacteria, and detect their host where traditional lab cultures may fall short. That, in addition to resilience in harsh environments and relative ease of mass production, renders phage promising candidates for pathogen detection applications. However, translation of phage-based biosensors to commercial products has been slow. In this comprehensive review, we discuss the current status of phage-based biosensors/bioassays for detection of waterborne bacterial pathogens, and important design parameters for bacteriophage-based detection platforms. We also discuss the challenges and promises of using phage-based detection methods in water and wastewater samples, as well as the future outlook for use of bacteriophages as a powerful tool in environmental engineering.

Graphical abstract: Emerging investigator series: bacteriophages as nano engineering tools for quality monitoring and pathogen detection in water and wastewater

Article information

Article type
Critical Review
Submitted
19 сеп 2020
Accepted
29 ное 2020
First published
08 дек 2020

Environ. Sci.: Nano, 2021,8, 367-389

Emerging investigator series: bacteriophages as nano engineering tools for quality monitoring and pathogen detection in water and wastewater

F. Bayat, T. F. Didar and Z. Hosseinidoust, Environ. Sci.: Nano, 2021, 8, 367 DOI: 10.1039/D0EN00962H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements