Issue 68, 2020

Anomalous boron isotope effects on electronic structure and lattice dynamics of CuB2O4

Abstract

Copper metaborate had a unique crystal structure and exhibited noteworthy magnetic phase transitions at 21 and 10 K. The electronic structure and lattice dynamics of copper metaborate Cu11B2O4 single crystals were investigated and compared with the optical properties of CuB2O4, to assess the boron isotope effect. The optical absorption spectrum at room temperature revealed two charge-transfer bands at approximately 4.30 and 5.21 eV with an extrapolated direct optical band gap of 3.16 ± 0.07 eV. Compared with the data on CuB2O4, the electronic transitions were shifted to lower energies upon the replacement of a heavier boron isotope. The band gap was also determined to be lower in Cu11B2O4. Anomalies in the temperature dependence of the optical band gap were observed below 21 K. Furthermore, 38 Raman-active phonon modes were identified in the room-temperature Raman scattering spectrum of Cu11B2O4, which were also observed in CuB2O4 with a shift to lower frequencies. No broadening caused by isotopic changes was observed. As the temperature decreased, phonon frequencies shifted to higher wavenumbers and the linewidth decreased. Anomalous softening in the Raman peaks below 21 K was also revealed.

Graphical abstract: Anomalous boron isotope effects on electronic structure and lattice dynamics of CuB2O4

Supplementary files

Article information

Article type
Paper
Submitted
25 сеп 2020
Accepted
09 ное 2020
First published
17 ное 2020
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2020,10, 41891-41900

Anomalous boron isotope effects on electronic structure and lattice dynamics of CuB2O4

R. D. Mero, C. Lai, C. Du and H. Liu, RSC Adv., 2020, 10, 41891 DOI: 10.1039/D0RA08200G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements