General oriented assembly of uniform carbon-confined metal oxide nanodots on graphene for stable and ultrafast lithium storage†
Abstract
A facile and general method for the oriented assembly of uniform carbon-confined metal oxide nanodots on graphene was developed via a well-designed process including surfactant-induced assembly, mismatched coordination reaction and subsequent in situ carbonization. On the basis of experimental analyses and density functional theory calculations, the key mismatched coordination reaction mechanism is clearly revealed, resulting in the formation of small amorphous metal–ligand complexes. This versatile oriented assembly strategy is then generally applied to obtain various carbon-confined metal oxide (SnO2, Cr2O3, Fe3O4 and Al2O3) nanodots on graphene. Notably, the as-prepared C@SnO2@Gr electrode as an LIB anode material possesses a high reversible discharge capacity of 702 mA h g−1 and an excellent capacity retention of over 100% tested at 2 A g−1 after 1200 cycles.
- This article is part of the themed collections: Horizons Community Board Collection – Advanced Energy Storage Technologies and International Year of the Periodic Table: Elements for Next Generation Batteries