Bismuth-rich bismuth oxyhalides: a new opportunity to trigger high-efficiency photocatalysis
Abstract
As the continuation and advances in traditional BiOX (X = Cl, Br, I), bismuth-rich bismuth oxyhalides (BiaObXc) show distinct differences in the surface local atomic structure, electronic structure, optical properties, and electrical conductivity relative to BiOX. These features endow bismuth-rich BiaObXc with more tunable properties to achieve excellent photocatalytic performance. Here, the state-of-the-art progress in bismuth-rich bismuth oxyhalides is reviewed to clarify the key structure–activity relationship for enhanced photocatalytic performance. Various methods for the controllable synthesis and formation mechanism of bismuth-rich BiaObXc are presented. Different strategies to tailor the photocatalytic behaviors are summarized, namely thickness tuning, morphological control, heteroatom doping, surface defect engineering, single atom engineering, surface modification, preparation of a solid solution and engineering of semiconductor heterojunctions. Moreover, the recent advances in BiaObXc for diversified photocatalytic applications, such as H2 generation, O2 production, CO2 reduction, N2 reduction, organic synthesis and pollutant removal, are summarized. Finally, the existing challenges and perspectives are also presented to bring about new opportunities for future research.
- This article is part of the themed collection: Journal of Materials Chemistry A Recent Review Articles