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Complex wound healing continues to be a significant clinical concern, demanding innovative interventions
that actively promote tissue regeneration and infection control beyond the capabilities of standard
dressings. Inorganic nanoparticle-based scaffolds have emerged as promising platforms, providing both
localized antimicrobial action and regenerative support. The unique physicochemical properties of
nanoparticles, including high surface area, controlled ion release, and redox activity, enable multiple
mechanisms for the inhibition of biofilm formation and modulation of the wound microenvironment to
stimulate immunomodulation, fibroblast migration, angiogenesis, and extracellular matrix deposition.
This review critically evaluates scaffold fabrication strategies, including electrospun nanofibers, gas
foaming, and 3D-printed constructs, and their influence on structural integrity, ion release kinetics, and
biocompatibility. We further analyse the mechanisms underlying inorganic nanoparticle-mediated
antimicrobial activity, emphasizing the interplay between direct surface interactions and sustained ionic
release, and also provide a detailed assessment of various inorganic nanoparticle-based scaffolds as
antimicrobial platforms. Despite considerable clinical progress, challenges remain in optimizing ion
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1. Introduction

As the largest organ of the human body, the skin serves a crucial
role in protecting against environmental pathogens, harmful
chemicals, dehydration, and thermal shock.® However, various
factors such as physical trauma from daily activities, injuries,
burns, prolonged mechanical stress, and underlying diseases
can compromise its integrity, leading to tissue damage or
defects, collectively referred to as wounds.> Wounds are broadly
categorized into acute and chronic types. Acute wounds, such as
surgical incisions, burns, lacerations, and abrasions, typically
heal in a predictable manner through the body's intrinsic
regenerative mechanisms.> In contrast, chronic wounds,
including diabetic foot ulcers, venous leg ulcers, and pressure
sores, fail to progress through normal healing stages due to
factors like ischemia, infection, or systemic disease.* These
non-healing wounds pose significant medical and economic
burdens, affecting 1-2% of individuals in developed nations,
with over 6.5 million cases in the United States alone, and
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potential of inorganic nanoparticle-integrated scaffolds as

multifunctional platforms for advanced wound care and underscores future directions for design
optimization and clinical application.

healthcare costs exceeding $25 billion annually. With the global
rise in diabetes projected to affect over 400 million individuals
by 2025, the prevalence of chronic wounds is expected to esca-
late, necessitating advanced therapeutic strategies.’

Wound healing process is a complex, highly coordinated
biological cascade involving multiple cellular and molecular
interactions. It progresses through four overlapping phases:
hemostasis, inflammation, proliferation, and remodeling.®
Hemostasis is the immediate response to injury, marked by
platelet aggregation and fibrin clot formation to prevent hae-
morrhage.” This is followed by the inflammatory phase, char-
acterized by neutrophil and macrophage infiltration, which
clears pathogens and necrotic debris while secreting cytokines
and growth factors to regulate subsequent repair processes.®
The proliferative phase involves fibroblast activation, extracel-
lular matrix (ECM) synthesis, angiogenesis, and keratinocyte-
driven re-epithelialization, culminating in tissue regenera-
tion.” The final remodeling phase extends over months to years,
involving collagen maturation and ECM remodeling to restore
tensile strength (Fig. 1)."° However, in chronic wounds, persis-
tent inflammation, bacterial colonization, and dysregulated
ECM impair normal healing, resulting in prolonged tissue
damage and functional deficits.
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Illustration of the four overlapping phases of the skin wound healing process: (1) Hemostasis with clot formation and vasoconstriction. (2)

Inflammation with immune cell activation and cytokine release. (3) Proliferation involving fibroblast activity, collagen deposition, and angio-
genesis, and (4) remodeling marked by ECM remodeling, collagen maturation, and scar formation (created with https://biorender.com).

To manage these chronic wounds, conventional wound care
primarily relies on dressings such as gauze, hydrocolloids, foams,
films, and alginate (ALG), which provide moisture balance,
absorb exudate, and protect the wound from external contami-
nants."" These dressings play a fundamental role in wound
management by creating a barrier against infections and facili-
tating a moist healing environment, which is crucial for optimal
tissue regeneration.”” However, traditional dressings have
inherent limitations, including poor adhesion, inadequate anti-
microbial properties, frequent replacements, and limited capacity
for drug delivery. More critically, they are often insufficient in
preventing bacterial colonization and biofilm formation, which
significantly delays healing and increases the risk of infection-
related complications.™ Bacterial colonization of wounds exacer-
bates inflammation, prolongs the inflaimmatory phase, and
contributes to chronic wound pathology.** This demonstrates the
demand for innovative wound care solutions which led to
significant market growth, with the global wound care market
valued at over $20 billion, projected to expand further due to the
rising prevalence of chronic wounds and advancements in
biomaterial technologies.” Although systemic and topical anti-
biotics are commonly employed for infection control, their
limited efficacy against biofilms and tendency to induce resis-
tance necessitate advanced wound care approaches.™®

To overcome these shortcomings, advanced wound -care
systems integrating biomaterials and nanotechnology have
further revolutionized therapeutic approaches. Nanomaterials-
based platforms, derived from both organic and inorganic sour-
ces, offer versatile strategies for wound healing. Organic nano-
materials and nanoparticles (NPs), such as polymeric NPs,
liposomes, and dendrimers, are biocompatible and provide
controlled drug delivery but often suffer from limited mechanical
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strength, insufficient antimicrobial activity, and rapid degrada-
tion. In contrast, inorganic nanomaterials, including metal and
metal oxide NPs and ceramic-based NPs, exhibit structural
stability and their sustained bioactive ion release, making them
highly suitable for advanced wound healing applications.” In
addition, the released bioactive ions can modulate the wound
microenvironment by generating reactive oxygen species (ROS)
and disrupting bacterial cell membranes, enhancing antimicro-
bial activity and preventing biofilm formation.*®

In this review, we provide a comprehensive and critical
evaluation of inorganic NP-based scaffolds as antimicrobial
platforms for wound healing. We first outline the pathophysi-
ology of chronic wounds and the evolution of current treatment
strategies, followed by an in-depth discussion of the physico-
chemical properties and fabrication approaches of inorganic
nanomaterials, along with their mechanisms of microbial
inhibition. Special emphasis is placed on scaffold-based
delivery systems incorporating NPs such as hydroxyapatite
(HA), zinc oxide (ZnO), silica (Si), titanium dioxide (TiO,) and
bioactive glass (BG), highlighting their dual functionality in
preventing infection and promoting tissue regeneration along
with their preclinical outcomes. Furthermore, the review high-
lights challenges in clinical translation and future strategies to
optimize scaffold design, emphasizing their potential as next-
generation platforms for advanced wound healing.

2. Chronic wounds -
pathophysiology and their current
treatment strategies

Chronic wounds present a persistent clinical challenge due to
their delayed healing and high susceptibility to infection.

© 2026 The Author(s). Published by the Royal Society of Chemistry
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Understanding the underlying pathophysiology is key to
creating effective interventions. Over time, treatment strategies
have evolved from simple protective dressings to advanced
therapeutic approaches. These strategies aim not only to protect
the wound but also to actively promote tissue regeneration and
infection control.*

2.1 Pathophysiology of chronic wounds

Chronic wounds are characterized by sustained inflammation
and impaired tissue remodeling, making them refractory to the
natural healing process.?® Unlike acute wounds, which typically
resolve within weeks to months, chronic wounds exhibit dys-
regulated cellular signaling and aberrant tissue responses that
disrupt the intricate cascade of wound repair.>* Despite varia-
tions in their etiology, the fundamental pathophysiological
mechanisms underlying chronic wound progression remain
consistent. Following tissue injury, platelets rapidly aggregate at
the wound site, initiating vasoconstriction and activating the
coagulation cascade to establish a fibrin clot.”> Under normal
physiological conditions, the subsequent inflammatory phase is
critical for pathogen clearance and cellular debris removal
through phagocytosis, creating a pro-regenerative microenvi-
ronment that facilitates tissue repair.”® However, in chronic
wounds, this tightly regulated process becomes dysfunctional,
perpetuating a cycle of inflammation and delayed healing. The
excessive accumulation of pro-inflammatory cells, including
macrophages and neutrophils, creates a hostile microenviron-
ment that impedes the inflammatory phase transition to the
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proliferative phase.** This transition is crucial for resolving
inflammation, stimulating angiogenesis, and facilitating ECM
remodeling. The macrophage accumulation is further amplified
by cytokine-driven activation of resident macrophages and the
induction of nicotinamide adenine dinucleotide phosphate
(NADPH) oxidases (NADPH oxidase 1 and NADPH oxidase 2),
which promote monocyte differentiation into the M1 pro-
inflammatory phenotype. Under homeostatic conditions,
macrophages undergo phenotypic switching from M1 to the M2
reparative state.>®*® However, in chronic wounds, this polari-
zation is disrupted and the absence of M2 phenotype due to
impaired efferocytosis of apoptotic neutrophils exacerbates the
production of pro-inflammatory cytokines, chemokines, and
dysregulated growth factors, ultimately hindering angiogenesis
and tissue regeneration.”

Neutrophils play a pivotal role in delayed wound healing by
driving excessive inflammation and tissue degradation.*® They
secrete proteolytic enzymes such as elastases and matrix
metalloproteinases (MMPs), along with neutrophil extracellular
trap-associated markers, which collectively disrupt the ECM
and impair tissue regeneration. Additionally, the persistent
accumulation of inflammatory cells leads to elevated ROS
production, which exacerbates oxidative stress, inhibits
epithelialization, and promotes tissue necrosis.** As inflam-
mation persists, the overexpression of pro-inflammatory cyto-
kines, including interleukin-1f and tumor necrosis factor-
alpha, further upregulates MMP activity, accelerating ECM
breakdown and impairing structural integrity.*® The compro-
mised wound bed creates a favourable niche for microbial
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Fig.2 Pathophysiology of chronic wounds outlining the multifactorial and complex biological mechanisms underlying delayed healing (created

with https://biorender.com).
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colonization and biofilm formation, resulting in two potential
pathological outcomes: tissue necrosis or chronic inflamma-
tion, both of which disrupt immune homeostasis at the wound
site.** This cascade of dysregulated processes contributes to
a hyperproliferative yet non-advancing wound margin, where
excessive cell proliferation fails to translate into effective wound
closure. Further exacerbating the impairment, essential angio-
genic factors such as platelet-derived growth factor and vascular
endothelial growth factor (VEGF) are rapidly degraded by
proteases, while the suppression of hypoxia-inducible factor 1-
alpha (HIF-1a) further inhibits new blood vessel formation.*?
This disruption in vascularization deprives the wound of
adequate oxygen and nutrients, further delaying tissue repair.
Additionally, the crosstalk between keratinocytes and fibro-
blasts, which are crucial for the proliferative phase, becomes
dysregulated leading to defective fibroblast function and
impaired ECM remodeling.** A hallmark of chronic wounds is
the failure to transition from type III collagen (early wound
matrix) to type I collagen (scar tissue), which is essential for
structural stability. This imbalance manifests as an absence of
proper ECM remodeling or excessive collagen deposition,
resulting in hypertrophic scar formation and fibrosis. Ulti-
mately, chronic wounds arise from an intricate interplay of
overlapping and interdependent factors, each reinforcing the
pathological cycle of impaired healing (Fig. 2).** Given this
complexity, a multifaceted therapeutic approach targeting
inflammation, oxidative stress, angiogenesis, and ECM
remodeling is essential to restore wound homeostasis and
accelerate tissue regeneration.

2.2 Evolution of wound healing strategies and technologies

The evolution of chronic wound management has undergone
substantial advancements, transitioning from conventional
surgical interventions to sophisticated bioengineered
approaches. The early 1900s marked the advent of debridement,
a fundamental surgical procedure aimed at excising necrotic,
infected, and non-viable tissue to minimize bacterial load and
granulation formation.*® Despite its
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effectiveness in removing necrotic and infected tissue, it often
necessitates successive intervention in chronic wounds, which
can exacerbate inflammation and impede progression to the
proliferative phase. Furthermore, debridement is inherently
limited as it does not target the underlying pathophysiological
mechanisms of chronic wounds, such as angiogenic insuffi-
ciency, dysregulated immune responses, and aberrant ECM
remodeling.*>* To mitigate these challenges, hyperbaric oxygen
therapy (HBOT) emerged as an adjunctive modality for chronic
wound healing by 1960s which utilizes atmospheric pressure to
enhance plasma oxygen solubility and improve oxygen perfu-
sion in hypoxic tissues.”” The therapeutic strategy fosters
fibroblast proliferation, stimulates collagen deposition, and
potentiates leukocyte-mediated bacterial clearance, collectively
promoting angiogenesis and expediting re-epithelialization.®®
Additionally, negative effects like oxygen toxicity, barotrauma,
and cell damage from oxidative stress make it harder to use
HBOT.***°

Recognizing the need for more accessible and targeted
interventions, the 1970s marked a paradigm shift with the
introduction of antibiotics and advanced wound dressings.
Antibiotics addressed microbial colonization and maintained
a moist microenvironment crucial for keratinocyte migration,
regulated exudate levels and facilitated autolytic debridement
thereby optimizing the repair dynamics.** Further, a localized
delivery of these drugs facilitated the development of micro-
needle arrays (MNAs). MNAs are minimally invasive drug carrier
systems that consist of needles in the microscale range, capable
of promoting sustained drug release.*” Xiang et al. developed
a biodegradable Cu based zeolitic-imidazolate framework-8
encapsulated with polyethylene glycol diacrylate/CMC MNAs
with strong antibacterial and pro-angiogenic properties for
enhanced wound healing. These MNAs also demonstrated
excellent biocompatibility and mechanical strength, along with
a sustained release of Cu ions, which collectively contributed to
enhanced epithelial regeneration and neovascularization.*

Biomaterials play a pivotal role in wound healing by offering
structural support, enhancing cellular adhesion and migration,
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Fig.3 Timeline illustrating the evolution of wound healing strategies and technologies, beginning with the empirical use of traditional treatments
to systemic antibiotics and biomaterials, marking a significant improvement in infection control (created with https://biorender.com).
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and facilitating tissue regeneration. To effectively fulfil these
functions, biomaterials must exhibit precisely tuned mechan-
ical properties tailored to the wound environment. Ideal
biomaterials for skin regeneration should demonstrate opti-
mized mechanical strength, flexibility, porosity, structural
integrity, sustained biodegradability, and excellent biocompat-
ibility.** Sufficient tensile strength ensures resilience against
mechanical deformation, while flexibility enables conformation
to wound contours, promoting better integration with
surrounding tissues. Moreover, the mechanical characteristics
of a biomaterial must be specifically engineered based on the
wound's anatomical location and dimensions to optimize
healing outcomes (Fig. 3).*

3. Inorganic nanomaterials —
a versatile biomaterial

Inorganic NPs, including metals, metal oxides, and bioactive
ceramics, possess distinct physicochemical properties that set
them apart from bulk materials and render them highly effec-
tive in wound healing. Their high surface reactivity, controlled
solubility, and catalytic activity modulate the wound microen-
vironment, simultaneously preventing microbial colonization,
regulating oxidative stress, and promoting essential cellular
processes such as fibroblast proliferation, keratinocyte migra-
tion, angiogenesis, and ECM remodeling.*® Beyond their direct
biological activity, they also function as reservoirs for sustained
delivery of bioactive ions, which further enhance tissue repair
and maintain a regenerative milieu.*” When these NPs are
incorporated into scaffold systems composed of natural or
synthetic polymers, their properties are amplified, and the
scaffolds provide structural support, mimic the ECM, and
enable controlled and localized ion release, ensuring contin-
uous stimulation of healing processes.*® Various studies have
successfully integrated inorganic NPs into polymeric scaffolds,
demonstrating enhanced antimicrobial activity, accelerated re-
epithelialization, and improved vascularization in preclinical
wound models. For example, ZnO- or TiO,-loaded polymeric

nanofibers showed superior bacterial inhibition while
promoting fibroblast proliferation, whereas BG-incorporated
hydrogels enhanced collagen deposition and neo-

vascularization in vivo.**”*' These findings highlight the versa-
tility of inorganic nanomaterials, not merely as passive
components but as active biological cues that orchestrate
multiple phases of wound healing, offering a multifunctional
approach for advanced wound care strategies (Table 1).

3.1 Fabrication of inorganic nanoparticles incorporated
composite scaffolds

Fabrication of scaffolds play a pivotal role in tissue engineering
by serving as 3D templates that provide structural support,
regulate cellular behaviour, and facilitate ECM deposition for
functional tissue regeneration.*® An ideal scaffold should
possess a highly porous architecture to enable nutrient diffu-
sion and vascularization while maintaining appropriate
mechanical properties to withstand physiological loads.*®

© 2026 The Author(s). Published by the Royal Society of Chemistry
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Furthermore, the incorporation of inorganic NPs into these
scaffolds has gained considerable attention, owing to its bene-
ficial role in combating microbial infection in wound healing.*®
Several studies have demonstrated feasibility and versatility in
fabricating inorganic NPs based composite scaffolds using
advanced techniques such as gas foaming, electrospinning and
fused deposition modelling (Fig. 4).

3.1.1 Electrospinning based scaffolds. Electrospinning has
emerged as a highly efficient technique for fabricating scaffolds
of submicron to nanoscale fibers with a high surface-area-to-
volume ratio and offers precise control over fiber morphology,
porosity, and mechanical characteristics. Therefore, these
electrospun fibers replicate the structural and functional
features of the native ECM in wound healing applications.?” By
incorporating bioactive NPs such as HA or BG into biodegrad-
able polymeric matrices like polycaprolactone (PCL) or gelatin
(Gel) and subjecting the solution to a high-voltage electrostatic
field, ultrafine fibers were ejected and deposited as the nano-
fibrous matrix. They exhibited enhanced cellular interactions
and accelerated wound healing.®® Furthermore, NPs embedded
within electrospun fibers undergo gradual disintegration,
leading to the sustained release of bioactive ions, which in turn
provide continuous biochemical cues essential for wound
healing.*® For instance, Khan et al. incorporated ZnO NPs into
poly(lactide-co-glycolic acid) (PLGA)/silk fibroin (SF) nano-
fibrous membranes, which demonstrated enhanced tensile
strength and thermal stability due to improved interfacial
interactions within the polymer matrix and enhanced antibac-
terial property while promoting cell migration, re-
epithelialization, and angiogenesis, making them highly rele-
vant for wound healing.”

3.1.2 Gas foaming-based scaffolds. The gas foaming tech-
nique is a solvent-free fabrication strategy employed to produce
scaffolds with high porosity, interconnected architecture, and
favorable fluid absorption and mechanical stability.”* In this
approach, biodegradable polymers blended with NPs of HA, BG,
Si, or zirconia (ZrO,) are exposed to foaming agents like
supercritical carbon dioxide or ammonium bicarbonate. The
rapid expansion and subsequent dissipation of gas create
uniform pores that promote oxygen diffusion and cellular
infiltration.”>** The incorporation of these NPs further enriches
the scaffolds with antimicrobial and immunomodulatory
functions, extending their applicability to complex wound
environments such as chronic wounds, diabetic ulcers, and
burns.” Bianchi et al. developed pullulan-based nanofibers
incorporated with cricket powder and HA, subsequently con-
verted into 3D scaffolds using NaBH,-mediated gas foaming.
The scaffolds demonstrated excellent cytocompatibility with
human dermal fibroblasts and mesenchymal stem cells, and in
vivo studies in murine incisional and burn models confirmed
their ability to support tissue regeneration and enhance wound
healing.”*

3.1.3 3D-printing based scaffolds. 3D-printing, known as
additive manufacturing, is a transformative approach to
industrial production that enables the fabrication of light-
weight, mechanically robust scaffolds through a layer-by-layer
deposition of biomaterials based on a digitally designed
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Fig. 4 Strategies of fabricating nanoceramic scaffolds with tailored architecture and responsiveness to support tissue regeneration such as
electrospinning for nanofiber formation, gas foaming, and freeze—drying for creating porous structures, stereolithography and 3D-printing for

precise scaffold design (created with https://biorender.com).

model.” 3D printing technology has enabled the precise fabri-
cation of NPs incorporated 3D printed biocomposite scaffolds
which demonstrate significant improvements in physicochem-
ical and biological properties.” In particular, NPs integrated
into various scaffold compositions address the challenges of
wound healing application. The sodium alginate (Na-ALG)/
poly(vinyl alcohol) (PVA) (3:1) 3D printed scaffolds loaded
with copper (Cu)-silver (Ag) doped mesoporous bioactive glass
nanoparticles (MBGNs) showed increased mechanical integrity,
hydrophilicity with controlled swelling and degradation.
Further, this scaffold showed S. aureus and E. coli inhibition,
cytocompatibility, and angiogenic potential.®”

3.1.4 Smart polymeric scaffolds. Smart polymeric scaffolds
incorporated with inorganic NPs have emerged as a promising
platform for advanced wound healing applications, and they
offer stimuli-responsive behavior, enhanced mechanical prop-
erties, and controlled drug delivery.”® The stimuli-responsive
characteristics enable environmentally triggered therapeutic
modulation, including pH-mediated drug release, thermally
induced sol-gel transitions, and electroconductive signaling,
facilitating precise regulation of wound healing processes.*”®

© 2026 The Author(s). Published by the Royal Society of Chemistry

Furthermore, the ions released from these NPs (e.g., Cu, Ag, or
Zn-doped BG) exhibit multifunctional bioactivity, conferring
antibacterial efficacy, pro-angiogenic stimulation, and wound
healing potential.'® These bioactive properties synergistically
enhance cellular proliferation, ECM synthesis, and neo-
vascularization, ultimately optimizing the microenvironment
for accelerated tissue regeneration.

3.1.5 Other fabricated scaffolds. The lyophilization tech-
nique or freeze-drying is a widely used method for fabricating
highly porous bioactive scaffolds with a polymeric solution
often incorporated with inorganic NPs, which is rapidly frozen
at sub-zero temperatures leading to the formation of ice crystals
that act as pore templates, followed by vacuum sublimation to
achieve interconnected porous network.'® For example, Raisi
et al. fabricated carboxymethyl chitosan (CMC) and iron oxide
(Fe,0O3) NPs and they showed enhanced mechanical integrity of
the CMC matrix along with its biocompatible nature.'®
Conventional scaffold fabrication techniques, such as solvent
casting and particulate leaching, have also been utilized for the
development of inorganic NPs-incorporated scaffolds in wound
healing applications.'® Notably, these techniques have unique
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advantages and limitations, and further research is required to
optimize their use in wound healing application.

3.2 Microbial inhibition pathways

Persistent microbial colonization and biofilm formation hinder
wound healing by prolonging inflammation and impairing
tissue repair.'® Inorganic NPs incorporated into scaffolds
counter these barriers by exerting localized and sustained
antimicrobial effects through both surface contact and
controlled ion release. In Gram-positive bacteria, the negatively
charged teichoic acids in the thick peptidoglycan layer facilitate
binding of cationic NPs or ions, and the porous nature of this
layer allows partial penetration. In contrast, Gram-negative
bacteria present an additional challenge with their
lipopolysaccharide-rich outer membrane, which creates
a strong negative surface charge that enhances electrostatic
attraction but restricts penetration due to its compact bilayer
structure. In both cases, interactions at the cell envelope
compromise membrane integrity and increase permeability,
enabling NPs and released ions to enter the cytoplasm.'> Once
internalized, metal ions such as Zn>', Ag®, and Mg®" bind
strongly to phosphate, carboxyl, and sulfthydryl groups, desta-
bilizing protein conformation, inactivating enzymes, and di-
srupting membrane-associated bioenergetics. These ions also
interact with nucleic acids and ribosomal machinery, impairing
transcription and protein synthesis and, in severe cases
inducing DNA fragmentation or oxidative modifications. For
instance, ZnO NPs have been shown to cause genomic breaks,
whereas Ag NPs deregulate stress-response and metal-transport
genes.'**'*” Through this multifaceted disruption of structural,
metabolic, and genetic processes, inorganic NPs not only
suppress bacterial growth but also attenuate virulence, thereby
reducing microbial burden and supporting effective wound
healing.

A key downstream consequence of NPs-bacteria interactions
is the generation of ROS, which amplifies antimicrobial activity.
The NPs or ions catalyze the production of ROS such as hydroxyl
radicals, superoxide anions, singlet oxygen, and hydrogen
peroxide.'® This oxidative stress overwhelms the bacterial
antioxidant defenses, leading to lipid peroxidation, protein
oxidation, and nucleic acid damage.'® By targeting enzymes
essential for energy production (e.g., ATP synthase, cytochrome
oxidases) and biosynthesis (e.g., fatty acid synthase, peptido-
glycan synthesis enzymes, and DNA gyrase), these NPs or ions
also reduce the ability of bacteria to establish resilient bi-
ofilms."® Collectively, these metabolic and biofilm-targeting
actions position NPs as multifaceted agents that enhance
scaffold-mediated antimicrobial efficacy and support effective
wound healing.

4. Inorganic nanoparticle-based
scaffolds as antimicrobial platforms for
wound healing

Inorganic NP-based antimicrobial strategies represent a signifi-
cant advancement in wound healing, harnessing their
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distinctive physicochemical properties to simultaneously
prevent microbial colonization and stimulate tissue regenera-
tion.™* These NPs exhibit potent bactericidal effects for the
inhibition of biofilm development.*> Among them, HA, Zn, Si,
and calcium phosphate NPs are extensively utilized in wound
healing for their ability to promote cell adhesion, proliferation,
and ECM remodeling."**'* When NPs are incorporated into
scaffolds, they provide sustained and localized ion release,
accelerating wound closure while also enhancing mechanical
integrity and biocompatibility (Table 2). Importantly, scaffold-
based systems help to mitigate cytotoxicity associated with
excessive NPs loading.""”

4.1 Hydroxyapatite

HA is widely employed in wound healing due to its remarkable
bioactivity, biocompatibility, and structural similarity to the
mineral component of human bone and hard tissues.® Its
distinctive physicochemical properties make it an excellent
scaffold for supporting cellular adhesion, proliferation, and
ECM remodeling, effective for tissue repair.’*” The nano form of
HA further amplifies its bioactivity by offering a high surface
area-to-volume ratio, which facilitates the controlled release of
calcium (Ca®") and phosphate (PO,>) ions.** These ions play
crucial roles in modulating cell signaling pathways, promoting
angiogenesis, and accelerating wound healing process. For
instance, Zhu et al. fabricated HA-ALG composite wound
dressing that integrates an ultralong HA nanowire bio-paper
with a calcium-ALG hydrogel matrix. Unlike conventional
brittle HA-based bioceramics, the ultralong HA nanowires
formed a highly flexible, interwoven structure, and they signif-
icantly enhanced the mechanical integrity. Their bioactive
properties enabled sustained calcium ion release, biocompati-
bility, enhanced cell migration, stimulated angiogenesis, and
exhibited enhanced antibacterial properties. Furthermore, in
vivo wound models demonstrated their efficacy in accelerating
wound closure, promoting collagen deposition, and inducing
neovascularization.” Similarly, Tejaswini and coworkers
synthesized HA from egg shell waste and developed an
atorvastatin-loaded CS-HA composite that demonstrated excel-
lent physicochemical properties and potent antibacterial
activity. In vivo studies revealed a notable inflammatory
response accompanied by fibrovascular proliferation, along
with early epithelialization and fibroblastic proliferation at the
wound site. Additionally, initial signs of normal skin regener-
ation were observed, indicating the composite's potential to
accelerate wound healing."® The HA-based wound dressings
exert antimicrobial effects via Ca®>' and PO,>” ion release,
modulating the microenvironment and supporting angiogen-
esis. However, its intrinsic activity is modest, limiting bacteri-
cidal action.** To address this limitation, HA is frequently
doped with Zn, Sr, Co, or Cu to introduces ROS generation,
membrane disruption, and pro-angiogenic signaling, signifi-
cantly enhancing antimicrobial and regenerative efficacy.

This integration of HA with metals like Zn, strontium, cobalt
(Co), Cu etc., has shown optimized functionality and improved
antimicrobial resistance. For instance, Wojcik et al. fabricated

© 2026 The Author(s). Published by the Royal Society of Chemistry
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two curdlan based biomaterials, incorporating Zn-doped nano-
HA and the other incorporating gentamicin. The Zn-doped HA
exhibited a 99.9% reduction of S. aureus, while the gentamicin
loaded biomaterial showed a strong bactericidal activity against
both S. aureus and P. aeruginosa. The controlled release of Zn
ions from the Zn-doped nano-HA biomaterial was effective in
combating infections in wound site."*> Among dopants, Cu and
Zn remain the most widely explored for HA, with Cu providing
potent bactericidal and angiogenic effects particularly suited for
resistant infections, whereas Zn offers moderate antimicrobial
efficacy alongside its role in enhancing keratinocyte prolifera-
tion and re-epithelialization. Furthermore, the integration of
photothermal agents in wound healing also presents a prom-
ising strategy for both antimicrobial activity and tissue regen-
eration. These agents, upon near-infrared (NIR) irradiation,
generate localized heat, effectively disrupting bacterial cell
membranes, denaturing proteins, and inducing apoptosis,
thereby eliminating infection at the wound site.****** Tao et al.
fabricated nanocomposites through a co-precipitation reaction
between PDA-coated HA NPs-loaded with Cu®". The HA-Cu/PDA
nanocomposites demonstrated a remarkable antibacterial

A)
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-‘

24 h
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©

E. coli

S. aureus

Fig.5
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efficacy of 91.0%, compared to HA-Cu (35.7%) and HA (8.5%).
This enhanced bactericidal effect was attributed to the syner-
gistic action of photothermal activation and Cu®" release. The
photothermal effect induced by NIR irradiation disrupted
bacterial membrane integrity leading to ATP leakage and
eventually bacterial lysis. Further, the scratch assay exhibited
that HA-Cu/PDA nanocomposite reduced the wound area to
17.6% within 24 hours, compared to 64.5% in the control
(Fig. 5). The HA-Cu/PDA nanocomposites along with NIR
significantly accelerated S. aureus-infected wound healing, via
anti-infection, anti-inflammation promoting cell migration,
granulation tissue formation, collagen deposition, and angio-
genesis."® Overall, the advancements in HA-based biomaterials,
particularly through metal doping and photothermal integra-
tion, significantly progressed the wound care strategies.

4.2 Zinc oxide nanoparticles

ZnO NPs have demonstrated potent antimicrobial activity
against both Gram-positive and Gram-negative bacteria, while
also facilitating accelerated wound healing through enhanced

HA-
HA- Cu/PDA
HA HA+NIR Cuw/PDA +NIR

\.

(B)

Control

(A) In vitro scratch assay and morphology of NIH-3T3 cells at different time. (B) Gross observation of wound area closure at day 0, 3, 7, and

14. (C) Antimicrobial activity against E. coli and S. aureus. Among them, (a) control, (b) HA, (c) HA-Cu, (d) HA-Cu/PDA, (e) control + NIR, (f) HA +
NIR, (g) HA-Cu + NIR, and (h) HA-Cu/PDA + NIR. Adapted from Tao, et al. (ref. 145), with permission from Elsevier.
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tissue regeneration."® The bactericidal mechanism of ZnO NPs
operates through multiple pathways, including electrostatic
interactions with bacterial membranes, and ROS genera-
tion."”**® The synthesis method of ZnO NPs significantly
influences their effectiveness in wound healing. Green-
synthesized ZnO NPs, derived from plant extracts, exhibit
superior biocompatibility, reduced cytotoxicity, and enhanced
biological activity, making them more suitable in promoting
wound healing compared to chemically synthesized ZnO NPs.'**
It is evident that, compared to chemically synthesized coun-
terparts, green-synthesized ZnO NPs not only enhance
biocompatibility but also incorporate bioactive compounds that
accelerate tissue regeneration, while modulating oxidative
stress to prevent cellular damage and support wound-healing
signaling pathways.” Despite advantages, widespread appli-
cation is limited by poor standardization. Variations in plant
metabolite composition, reaction conditions, and NPs stability
reduce reproducibility and make cross-study comparisons
difficult. To address these issues and improve functionality,
ZnO NPs have been incorporated into polymeric scaffolds. For
example, Khan et al. fabricated PLGA/SF nanofiber incorporated
with ZnO NPs, which showed increased mechanical strength
and antibacterial activity. The in vivo analysis showed a signifi-
cant wound closure.*** Similarly, Hamedi et al. developed a bi-
oengineered hybrid wound dressing composed of schizophyllan
(SPG)-modified bacterial cellulose polymers integrated with
ZnO NPs. The ZnO-free scaffolds demonstrated limited anti-
bacterial activity; whereas the incorporation of ZnO NPs mark-
edly enhanced the bacterial inhibition rates. Additionally, the
scaffolds exhibited biocompatibility and fibroblast prolifera-
tion, an important factor of wound healing.'* These findings
emphasize that the simultaneous application of SPG and ZnO
NPs can be effective against burn wounds. These studies
emphasize that the Zn>" released from the scaffolds promoted
increased fibroblast proliferation, keratinocyte migration, and
collagen synthesis thereby enhancing angiogenesis at the
wound site.'*

Although ZnO NPs possess intrinsic antimicrobial activity
through Zn>" ion release, the incorporation of additional anti-
microbial agents can further enhance its therapeutic efficacy,
particularly in complex or infected wound environments.***
Recent progress in nanomedicine has emphasized the strategic
encapsulation of bioactive agents within ZnO NPs to augment
complementary effects, particularly in wound healing applica-
tions."* Saddik et al. fabricated azithromycin (AZM)-loaded ZnO
NPs, which showed superior antibacterial efficacy compared to
free azithromycin. In vivo application of AZM loaded ZnO NPs
embedded in a hydroxypropyl methylcellulose gel on wounded
rats resulted in enhanced wound closure, improved epidermal
regeneration, and a more organized tissue architecture, high-
lighting their potential as a dual-function therapeutic platform
for infection control and tissue repair.***

4.3 Silica nanoparticles

Si NPs have emerged as promising materials in wound healing
due to their wunique physicochemical and biological
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properties.*”**® Various forms including non-porous MSNs,
hollow MSNs, and core-shell Si NPs-have been engineered to
enhance wound healing efficacy.” In wound applications, Si
NPs contribute by facilitating hemostasis, stimulating fibro-
blast proliferation, enhancing collagen synthesis, and acceler-
ating re-epithelialization. The antibacterial activity is mainly
ROS generation, and biofilm inhibition.*® Abolghasemzade
et al. reported the development of a multifunctional nano-
composite consisting of carbon quantum dots (CQDs), Si NPs,
and SF, integrated into two wound dressing platforms: a bacte-
rial cellulose structure via spray coating and PVA nanofibers via
electrospinning. Antibacterial assessments demonstrated that
the CQD/Si NP/SF composite exhibited enhanced efficacy due to
Si NPs incorporation. In vivo wound healing studies in a murine
model also showed that the Si NPs-incorporated PVA-CQD/SF
nanofiber dressing achieved potent antibacterial and regener-
ative properties.*** However, MSNs offer superior antimicrobial
efficacy in wound healing applications compared to conven-
tional Si NPs due to their unique structural characteristics, large
pore volume, and tunable pore sizes, which allow MSNs to
encapsulate and deliver a wide range of antimicrobial agents
with high loading efficiency and controlled, sustained release at
the wound site, combining stimuli-responsive drug release.
Additionally, MSNs can be surface-functionalized with stimuli-
responsive or targeting moieties, enabling site-specific
delivery and enhanced therapeutic outcomes in infected or
inflamed wounds. Zhu et al. developed a novel antibacterial
nanoplatform, using Ag NPs-decorated and mesoporous silica
(mSiO,)-coated single-walled carbon nanotubes (SWCNTs),
constructed via a N-[3-(trimethoxysilyl)propyl]ethylene diamine
(TSD)-mediated method (SWCNTs/mSiO,-TSD/Ag). The incor-
poration of Ag-decorated MSNs improved SWCNT dispersibility
and increased bacterial contact. The SWCNTs/mSiO,-TSD/Ag
nanoplatform exhibited enhanced antibacterial performance
due to the synergistic effect of mSiO, and Ag NPs, ensuring
better bacterial inhibition at lower concentrations. Where, the
mSiO, coating enhances SWCNT dispersibility, maximizing
bacterial contact, while Ag NPs sustained Ag" release disrupts
the cell membranes, impairing protein function, and inducing
oxidative stress. Further in vivo study involving full-thickness
skin wounds infected with multidrug-resistant S. aureus
demonstrated significant reduction in wound area in the
SWCNTs/mSiO,-TSD/Ag group, compared to the SWCNTSs/
mSiO,-TSD group, indicating their superior therapeutic efficacy
with Ag NPs.'®?

Deaconu et al. developed a Zn-modified marine collagen
porous scaffold incorporated with wild bilberry (Vaccinium
myrtillus) leaf extract (WB) and encapsulated within function-
alized MSNs. The WB/MSN system exhibited significantly
improved antibacterial activity, compared to the free WB
extract.'® Li et al. engineered ROS-responsive drug delivery
platform utilizing MSNs encapsulated with vancomycin (Van),
and further functionalized with thioketal-linked methoxy poly
(ethylene glycol) (mPEG-TK) to produce Van-mPEG-TK-MSNs.
This functionalization in the presence of elevated ROS levels,
commonly associated with infected and inflamed wound
microenvironments, degrades the mPEG, thereby facilitating
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targeted and controlled antibiotic release. The Van-mPEG-TK-
MSNs exhibited a substantial bactericidal effect, achieving
approximately 70% reduction in bacterial viability compared to
control groups. Moreover, in vivo wound healing assessments
revealed superior therapeutic outcomes, with the ROS-
responsive nanocarriers markedly enhancing re-
epithelialization and keratinocyte migration.'** However, reli-
ance on endogenous ROS is limited, as oxidative stress varies
across wound types, causing inconsistent antibacterial
outcomes. To address this challenge, light irradiation offers
a controllable exogenous trigger, enabling consistent and
reproducible activation of silica-based nanoplatforms.**®

Light irradiation plays a crucial role in enhancing the anti-
bacterial efficacy of SiO,-based NPs through photodynamic and
photothermal mechanisms. Upon activation by specific light
wavelengths, these NPs generate ROS or localized hyper-
thermia, leading to bacterial membrane disruption, biofilm
degradation, and increased bactericidal activity. In wound
healing, silica-based NPs demonstrate intrinsic antimicrobial
activity through ROS generation and membrane disruption, yet
the therapeutic impact is considerably enhanced when inte-
grated with additional agents or external triggers. Acting as
multifunctional carriers, silica-based NPs stabilize therapeutic
cargos, enable controlled release, facilitate targeted delivery,
and promote deeper biofilm penetration, which broadens the
scope of clinical applications.

4.4 Titanium dioxide nanoparticles

TiO, NPs have garnered significant attention in antimicrobial
research due to their unique photocatalytic and physicochem-
ical properties. Upon ultraviolet-A irradiation (A =< 385 nm),
TiO, NPs undergo photoactivation, resulting in the generation
of high-energy electron-hole pairs that catalyze the formation of
ROS, including hydroxyl radicals (-OH), superoxide anions
(057), and hydrogen peroxide (H,O,). The cell wall is the initial
target, where ROS disrupt peptidoglycan or chitin layers,
exposing the underlying membrane to lipid peroxidation,
increased permeability, and cell lysis. TiO, NPs also impair the
mitochondrial respiratory chain, and induce DNA strand
breaks. Additionally, they downregulate genes involved in iron
and phosphate uptake, disturbing metabolic homeostasis,
while inhibiting quorum sensing and biofilm formation. The
nanoscale size enhances the surface interaction and cellular
penetration, enabling broad-spectrum efficacy against bacteria,
fungi, and multidrug-resistant strains. These multifactorial
mechanisms position TiO, NPs as a promising antimicrobial
platform for chronic wound management.**®

TiO, NPs can be synthesized through chemical and green
methodologies but the TiO, NPs synthesized through green
methods exhibited superior photodegradation efficiency,
enhanced antibacterial activity against pathogens such as S.
aureus, E. coli, and K. pneumonia, and notable wound-healing
potential.*”” Although TiO, NPs are widely recognized for their
antimicrobial properties through various mechanisms, their
large bandgap prevents activation under visible light, which
limits photocatalytic efficiency and reduces antimicrobial
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effectiveness. However, this limitation can be overcome
through structural modifications or by incorporating TiO, into
nanocomposites, thereby enhancing their bioactivity and ther-
apeutic potential.®®

Nikpasand et al. developed a TiO,/Gel nanocomposite and it
significantly reduced bacterial colonization. Under in vivo
conditions, there were the synergistic antimicrobial and
regenerative properties conferred by the TiO,/Gel nano-
composite.” Li et al engineered a multifunctional nano-
composite by incorporating TiO,NPs into a heparin-polyvinyl
alcohol hydrogel matrix (H-PVA/TiO,) via freeze-drying. This
hydrogel-based nanocomposite bandage exhibited potent anti-
microbial activity and favourable cytocompatibility. In vivo
wound healing studies in Kunming mice revealed that wounds
treated with the H-PVA/TiO, nanocomposite achieved nearly
complete closure within 14 days.'”® Whereas the addition of
TiO, into PCL nanofibers slightly improved the mechanical
strength from 1.044 MPa in pure PCL to 1.78 MPa in the
composite. The nanofibers showed very strong antimicrobial
efficacy against E. coli and S. aureus. The MTT (3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay
and DAPI (4/,6-diamidino-2-phenylindole) staining showed
biocompatibility of the PCL/TiO, scaffolds towards cells. This
dual role of enhancing scaffold mechanics while exerting strong
antimicrobial action underscores TiO,'s distinctive function-
ality in wound healing applications.’”* Furthermore, the
subsequent study has explored the multifunctional designs of
TiO, with other bioactive components, not to substitute but to
synergize its bactericidal potential. For example, a multifunc-
tional nanofibrous wound dressing by integrating GO, TiO,, and
curcumin into a cellulose acetate (CA) matrix was prepared and
tested. The nanofibrous matrix showed potent antimicrobial
activity against E. coli, S. aureus, P. aeruginosa, and E. faecalis.
Biocompatibility assessments via MTT assay confirmed
enhanced fibroblast viability and favourable, stress-free cell
morphology.’”” Collectively, these studies underscore the
versatility of TiO,-based nanomaterials as potent antimicrobial
and wound regenerative agents.

4.5 Bioactive glass nanoparticles

Bioactive glass nanoparticles (BGNs) are multifunctional
materials widely recognized for their excellent biocompatibility,
regenerative capacity, and broad applicability in wound healing
and antimicrobial therapies.'”® BGNs are primarily composed of
SiO,, sodium oxide, calcium oxide, and phosphorus pentoxide,
imparting distinct physicochemical characteristics.””* The
release of bioactive molecules from BGNs increases local pH
and osmotic pressure, hence providing antimicrobial effects,
while simultaneously facilitating angiogenesis, collagen
production, and tissue regeneration.'”® Furthermore, BGNs play
a pivotal role in immunomodulation by facilitating macrophage
polarization from the pro-inflammatory M1 phenotype to the
anti-inflammatory and tissue-regenerative M2 phenotype. This
transition mitigates excessive inflammation while promoting
a microenvironment conducive to tissue repair and regenera-
tion."® Its effectiveness in diabetic wound healing has been
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demonstrated by the studies conducted by Sharaf et al. fabri-
cated CA nanofibers incorporated with BGNs; the incorporation
of 3% BGNs exhibited better inhibitory effects against S. aureus,
E. coli, S. typhimurium, B. subtilis and B. cereus. Further, the
incorporation of 3% BGN in the CA nanofibers accelerated the
wound healing potential in diabetic rat model."”” Yuan et al.
synthesized poly(i-lactide-co-glycolide)/Gel nanofibers incorpo-
rated with BGNs and they facilitated cell migration, tubule-like
network formation in HUVECs, and upregulated the expression
of VEGF, FGF, EGF, Coll genes in diabetic rat models, thereby
fostering angiogenesis and collagen synthesis. Given these
translational characteristics, BGN-loaded scaffolds could be
strategically advanced for clinical application in diabetic wound
management.'”®

The therapeutic efficacy of BGNs in antimicrobial and
wound healing applications can be substantially enhanced
through the incorporation of functional dopants such as Ag, Zn,
Cu, boron (B), cobalt (Co), cerium (Ce), and gold (Au)."”® Among
these, Ag-doped BGNs have garnered considerable attention
due to their potent and broad-spectrum antibacterial activity.**®
The sustained release of Ag" ions from the BGN matrix not only
facilitates the concurrent release of critical network modifiers
such as Ca®" and Si*", but also induces pronounced antimi-
crobial effects by compromising bacterial membrane integrity,
disrupting vital metabolic and protein synthesis pathways, and
effectively inhibiting biofilm formation which is critical for
preventing infection and promoting accelerated tissue repair.'®
In another study, Sharifi et al. fabricated Gel, CS, and poly-
ethylene oxide (PEO) nanofibers incorporated with Ag-doped
BGNs and these nanofibers exhibited enhanced antibacterial
properties. In vivo studies in BALB/c mice showed that wounds
treated with Ag/BGNs-Ch/PEO/Gel scaffolds promoted thicker
epidermal layers, enhanced epithelialization, increased
collagen synthesis, and stimulated angiogenesis."®> However,
Ag' ions often exhibit burst-release kinetics, resulting in an
initial surge in ion concentration that may compromise long-
term antimicrobial efficacy and biocompatibility.

The incorporation of ZnO-doped BGNs in a hydrogel matrix
consisting of succinyl CS/oxidized ALG exhibited nearly 100%
bacterial lethality towards S. aureus and E. coli, which was
attributed to the synergistic interaction between CS and ZnO-
BGNs. Moreover, the controlled release of therapeutic ions
from biocomposite supported macroscopic skin regeneration
and stimulated cellular secretion of key angiogenic markers,
such as CD31 and a-SMA, thereby promoting vascularization
and tissue remodeling.'® Collectively, these findings demon-
strate that doped BGNs represent adaptable platforms for
wound care, with Ag conferring potent antimicrobial protec-
tion, Cu and Co stimulating angiogenesis, and Zn integrating
antibacterial and immunoregulatory functions. Such multi-
functional properties enable tailored scaffold design aligned
with wound severity and type, thereby harmonizing infection
control with vascular and regenerative demands.

However, silicate-based BGN are characterized by slower
degradation in physiological environments, resulting in subop-
timal ion release kinetics that may impede the activation of
cellular signalling pathways essential for wound healing. To
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overcome this, borate-based bioactive glass nanoparticles
(BBGNSs) have emerged as a compelling alternative to traditional
silicate glasses. Unlike silicate glasses, BBGNs exhibit faster
dissolution, allowing for more rapid ion release, which can
stimulate key cellular activities associated with wound healing.'**
The degradation of BBGNs releases boron ions (B**), which have
been shown to promote angiogenesis, collagen deposition, and
fibroblast proliferation.”®® Moreover, BBGNs possess intrinsic
antibacterial properties attributed to the elevated pH and osmotic
pressure resulting from its ion exchange dynamics.'® Altogether,
BGN based scaffolds provide a versatile platform for wound
healing, where tailored degradation and therapeutic ion release
enable simultaneous infection control, angiogenesis, and tissue
repair, underscoring its potential for effective clinical translation.

4.6 Other nanoparticles

Transition metal oxide-based NPs have been increasingly recog-
nized as a distinct class of biofunctional materials, exhibiting
considerable potential in therapeutic biomedical applications,
particularly in the context of wound repair and regeneration. Metal
oxide-based NPs such as yttrium oxide (Y,03), vanadium(m) oxide
(V,03), magnesium oxide (MgO), cerium oxide (CeO,), and
alumina (Al,O3) have garnered increasing interest for their thera-
peutic utility in wound healing, owing to their distinctive lattice
structures, redox behaviour, and surface chemistry. The antibac-
terial activity of these NPs arises from diverse physicochemical
interactions that collectively disrupt microbial integrity and bi-
ofilm formation. Among these, Y,0O; NPs demonstrated notable
bactericidal and angiogenic properties. The positively charged
surface of Y,0; NPs facilitated strong electrostatic interactions
with the negatively charged bacterial membranes, resulting in
membrane disruption and increased permeability. These interac-
tions also contributed to the inhibition of biofilm formation,
which is critical in preventing recurrent infections in chronic
wounds.™

V,0; NPs exhibit intrinsic oxidase-mimetic activity, under-
going cyclic redox transitions between V¥, V**, and V°* states.
This redox cycling promotes efficient electron transfer, which in
turn drives the catalytic conversion of molecular oxygen into ROS
with strong antimicrobial effects.'®® Furthermore, this controlled
ROS levels act as secondary messengers, modulating redox-
sensitive pathways that upregulate pro-regenerative genes
involved in fibroblast proliferation, angiogenesis, and matrix
remodeling.’® Similarly, MgO NPs eradicate bacteria through
ROS generation but also establish a mildly alkaline microenvi-
ronment that suppresses microbial survival while supporting cell
proliferation and matrix deposition.” Alongside these effects,
MgO actively promotes VEGF-induced angiogenesis and drives
macrophage polarization toward a regenerative M2 phenotype,
creating a coordinated cellular and molecular response that
culminates in effective wound closure.*"**

Additionally, Al,O; and CeO, NPs known for their structural
stability and biocompatibility, exhibit pronounced antimicrobial
properties.’® CeO, NPs, capable of redox-switching between Ce**
and Ce"", exhibit potent antioxidant and antimicrobial proper-
ties.”* Thus, it is evident that the metal oxide-based NPs have the
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therapeutic potential towards wound healing when they are
incorporated into to suitable scaffold systems (Table 3).

4.7 Comparative evaluation of inorganic nanoparticles in
wound healing

Each class of inorganic NPs exhibits distinct profiles of ion
release, antimicrobial activity, angiogenic stimulation, and
cellular migration. Comparative evaluation of these profiles is
essential for aligning inorganic NP-based systems with the
pathological features of different wound types and ensuring
that their functional contributions meet clinical requirements.
In acidic wound microenvironments, ZnO and CuO quickly
release Zn>" and Cu®'. This kills a wide range of pathogens,
including E. coli, P. aeruginosa, S. aureus, MRSA, and Candida
albicans.*® Their regenerative effects, including fibroblast
migration and angiogenesis, are dose-dependent, observed
predominantly at lower concentrations, while higher doses
induce oxidative stress or excessive early inflammation, making
it suitable for highly infected wounds.*** While TiO, contributes
primarily via modest ROS-driven antibacterial activity against E.
coli and S. aureus with minimal angiogenic and migratory
effects, which can be enhanced via photoactivation, making it
suitable for superficially infected wounds.>* In contrast, MgO,
as an emerging inorganic NP, releases Mg>" in a sustained
manner to stabilize the wound while moderating inflammatory
cytokine activity.>*® MgO demonstrates moderate antimicrobial
coverage against Gram-negative (E. coli, P. aeruginosa, Klebsiella
pneumoniae), Gram-positive (S. aureus, MRSA, Enterococcus fae-
calis), and opportunistic fungi (Candida albicans, Candida tro-
picalis), thereby improving their ability to promote regeneration
in chronic or ischemic wounds.?””

Mineral-derived NPs, including HA, bioglass, and Si NPs,
exhibit ion-driven bioactivity. HA dissolves slowly, releasing
Ca®" and PO,’” ions to support matrix organization and fibro-
blast migration, but offering minimal antimicrobial action.
Bioglass dissolves more rapidly, enhancing endothelial activa-
tion, angiogenesis, and granulation, with moderate antimicro-
bial suppression of S. aureus, E. coli, and P. aeruginosa; doping
with Ag, Zn, or Cu further expands antimicrobial coverage to
MRSA and Candida albicans and its angiogenic potential.>*® Si
NPs release silicate ions gradually, modulating inflammation
and supporting structured matrix deposition, with modest
antimicrobial activity that improves when doped or surface-
functionalized.**

Furthermore, redox-active NPs, including CeO, and vana-
dium dioxide (VO,) rely on valence-state-mediated redox regu-
lation rather than ion dissolution. CeO, promotes fibroblast
migration and granulation, making it particularly suited for
chronic or inflammation-impaired wounds.”*® VO, demon-
strates stronger antimicrobial activity against S. aureus, E. coli,
Klebsiella pneumoniae, and occasionally Candida species,
making it more suitable for infected wounds. However, the
therapeutic window for these NPs is narrower due to their dose-
dependent cytotoxicity.>** The redox-active NPs stabilize chronic
inflammation, support neovascular organisation, and facilitate
collagen deposition, and wound closure outcomes are highly
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formulation- and dose-dependent, and their angiogenic stim-
ulation is moderate at sub-toxic concentration.*>*** Across
these inorganic NP classes, fabrication challenges commonly
arise from maintaining particle size uniformity, preventing
agglomeration, and ensuring stable dispersion within poly-
meric matrices, all of which influence consistent ion release or
redox activity. Overall, the therapeutic performance of the
inorganic NPs in the scaffold largely depends on specific wound
conditions, as the wound microenvironment ultimately governs
the inorganic NP stability, bioavailability, and biological
response in the scaffold.

5. Preclinical to clinical translation

Even though NP- based scaffolds have emerged as highly
promising biomaterials in regenerative medicine, as evidenced
by the in vitro studies, in vivo models or preclinical studies are
indispensable for comprehensively evaluating the therapeutic
efficacy of NPs within complex biological environments. These
studies yield critical mechanistic insights into antimicrobial
performance, immunomodulatory responses, and the regula-
tion of cellular processes essential for effective tissue remod-
elling and wound resolution. The preclinical evaluation
conducted by Qiangian et al. involved in analysing the inorganic
NP-based hydrogel composed of nanohydroxyapatite, CS, and
tilapia skin-derived peptides (TP) using partial-thickness burn
wound model with the New Zealand rabbits. The NHA/CS/TP-II
hydrogel exhibited superior wound healing efficacy, with
complete scab detachment and visible hair regrowth by day 21,
indicating substantial epithelial and follicular regeneration.
Furthermore, biochemical analyses and immunohistochemical
staining indicated the hydrogel's ability to promote angiogen-
esis and tissue regeneration.*** Similarly, Zhang et al. developed
a multifunctional bioactive hydrogel combining aldehyde-
functionalized pluronic F127 and alendronate sodium-
modified Si-Ca-Cu nanoglass (BGNCu/AL) for wound healing.
The in vivo assessment in normal and MRSA-infected full-
thickness skin wounds in murine models demonstrated rapid
wound healing with 75% closure in normal wounds and 70%
closure in MRSA-infected wounds, approximately three times
faster than the untreated control. This hydrogel also exhibited
enhanced epidermal thickness, collagen organization, vascu-
larization, and anti-inflammatory microenvironment.**?
Furthermore, the therapeutic potential of inorganic NP-
based scaffolds has also been reported in the clinical trials.
For example, the therapeutic efficacy of calcium ALG dressings
loaded with ZnO (CAZnODs) was evaluated for treating diabetic
foot ulcers in type 2 diabetes patients. A total of 26 patients were
randomized into two groups: 16 received the NPs-infused
dressings (experimental group), and 10 received standard
calcium ALG dressings (control group). Over a 10 weeks treat-
ment period, both groups demonstrated progressive wound
healing; however, the experimental group exhibited signifi-
cantly improved wound closure. Collectively, the study
demonstrated that CAZnODs accelerated wound healing,
exhibited biocompatibility, and represented a safe and effective
therapeutic option for managing diabetic foot ulcers in diabetic
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populations.”® Collectively, these findings emphasize the
transformative potential of inorganic NP-based scaffolds in
wound care, providing not only accelerated healing but also
a safe and effective alternative to conventional treatments. To
fully harness its therapeutic potential and refine its application
across varied patient populations and wound types, further
clinical trials and long-term studies are essential. While such
clinical outcomes highlight the therapeutic potential of inor-
ganic NPs-based scaffolds, their broader clinical implementa-
tion remains limited due to complex regulatory pathways,
manufacturing challenges, and incomplete understanding of
long-term biosafety.

6. Challenges and future perspectives

Inorganic NP-based wound healing platforms continue to gain
significant momentum because of the convergence between
nanotechnology and regenerative medicine. The global inor-
ganic NPs market, valued at USD 2.5 billion in 2022, is projected
to reach approximately USD 7.9 billion by 2030, representing
a compound annual growth rate of 15.4%.*"” This rapid
expansion is primarily driven by the increasing demand for
advanced antimicrobial wound care solutions and the widening
scope of nanomaterials in biomedical engineering, especially
within tissue regeneration and infection control. Numerous NP-
based formulations have demonstrated potent antimicrobial
activity and favourable biocompatibility, leading to the devel-
opment of promising commercial products. For instance,
megaNANO® Gel (Zuventus Healthcare Ltd, India) which is
incorporated with Ag NPs, has been utilized for managing
wound infections, while NanoSALV, a catalytic advanced wound
care treatment (NanoTess Inc, Canada) has shown efficacy in
treating advanced, non-healing wounds. These developments
underscore the translational potential of inorganic NP systems,
particularly in accelerating wound closure, enhancing tissue
regeneration, and improving infection resolution.

Despite progress, inconsistent safe dose ranges continue to
limit the clinical translation of NPs, with some studies reporting
toxicity at concentrations considered non-toxic. These discrep-
ancies arise from variations in particle size, surface chemistry,
and testing methods. Standardized evaluation criteria are
therefore essential to ensure reliable safety assessments.*®
Refinement of inorganic NP formulations is essential to opti-
mize dosing, exposure duration, and controlled release, mini-
mizing off-target effects and improving safety. Heterogeneity in
wound types, microenvironments, and patient comorbidities
complicates standardization, while long-term biocompatibility
remains a concern due to potential delayed inflammatory or
fibrotic responses. Current studies are limited by small sample
sizes, short-term evaluations, and lack of multicenter trials,
highlighting the need for robust, longitudinal in vivo research to
validate safety, immunocompatibility, and functional efficacy in
chronic wounds. Standardized preclinical models and adher-
ence to specific regulatory frameworks, including Food and
Drug Administration guidance on nanotechnology in drug
products and European Medicines Agency guidelines on nano-
medicinal products, will be critical for clinical translation. On
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the technological front, integrating inorganic NPs into stimuli-
responsive hydrogels, biodegradable films, or hydrocolloids,
combined with wearable biosensors, offers the potential for
adaptive, personalized wound care with precision-controlled
therapeutic release.

From a manufacturing perspective, high costs and technical
complexity in NP synthesis limit scalability. Conventional
methods often require energy-intensive conditions or rare
precursors, prompting exploration of eco-friendly approaches
such as plant-based or microbial-assisted green synthesis.
Advances in additive manufacturing and Al-driven modeling
offer the potential for patient-specific, biologically functional
scaffolds. Clinical translation must comply with internationally
recognized safety standards, including ISO 10993, which guides
biological evaluation of medical devices. Part 1 of the standard
emphasizes structured risk assessment and testing before in vivo
or clinical application.”* However, within the ISO 10993 frame-
work, long-term implantation and genotoxicity assessments are
particularly important for NPs, since standard assays may not
fully account for its persistence or nanoscale interactions. In
addition, hemocompatibility and degradation studies must be
tailored to wound types to ensure a reliable safety profile. Navi-
gating these regulatory pathways demands early engagement
with approval bodies, harmonization of testing protocols, and
interdisciplinary collaboration to facilitate commercialization
while ensuring patient safety and clinical efficacy.

7. Conclusions

Inorganic NP-based scaffolds in wound healing offer a highly
versatile platform integrating antimicrobial functionality with
regenerative bioactivity. Through mechanisms such as localized
ion exchange, redox modulation, and biointerface-mediated cell
signaling, inorganic NPs have demonstrated efficacy in
promoting fibroblast migration, angiogenesis, collagen depo-
sition, and biofilm disruption. The integration of NPs into
engineered constructs including electrospun nanofibers,
injectable hydrogels, and 3D biocomposites has enabled site-
specific, sustained delivery of therapeutic agents while concur-
rently providing structural support and biomimetic cues for
tissue regeneration. Even though the inorganic NP-based ther-
apies show great promise, optimizing biocompatibility,
ensuring consistent performance under physiological condi-
tions, and establishing standardized long-term safety protocols
remain important for their broader clinical adoption. Advances
in green synthesis, stimuli-responsive architectures, and
patient-specific scaffold engineering via computational model-
ling and additive manufacturing present promising avenues to
overcome these current limitations. Furthermore, advancing
clinical success will require not only material innovation but
also the incorporation of predictive in vitro platforms, real-time
biosensing, and responsive scaffold designs to precisely regu-
late therapeutic ion delivery and orchestrate cellular behaviour.
With continued interdisciplinary innovation and regulatory
alignment, inorganic NP-based systems are poised to become
pivotal in the next generation of targeted, intelligent wound
care therapies.

© 2026 The Author(s). Published by the Royal Society of Chemistry
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Ag Silver

Ag NPs  Silver nanoparticles

Al, O, Alumina

o-SMA  Alpha-smooth muscle actin («-SMA)

ALA Alpha lipoic acid
ALG Alginate

AZM Azithromycin
B,C Boron carbide

BaTiO; Barium titanate
BBGNs  Borate based bioactive glass nanoparticles

BCM Bacterial cellulose membrane
BG Bioactive glass

BGNs Bioactive glass nanoparticles
BS Boswellia serrata

CA Cellulose acetate

CaS Calcium silicate

CD31 Cluster of differentiation 31
Ce Cerium

CeO, Cerium oxide

CMC Carboxymethyl chitosan

CMS Carboxymethylated starch

Co Cobalt

CQDs Carbon quantum dots

CS Chitosan

Cu Copper

Cu- Copper containing mesoporous bioactive glass
MBGNs

CuO Copper oxide

DAPI 4/ /6-Diamidino-2-phenylindole
ECM Extracellular matrix

Fe,0; Iron oxide

FeO Iron(u) oxide

Gel Gelatin

GG Gellan gum

GO Graphene oxide

GO, Glucose oxidase

HA Hydroxyapatite

hBN Hexagonal boron nitride
HBOT Hyperbaric oxygen therapy
HDF Human dermal fibroblasts

HIF-1aa  Hypoxia-inducible factor 1-alpha
H-PVA Heparin-polyvinyl alcoholPVA
HUVEC Human umbilical vein endothelial cells

LTA Linde type A

LV Levofloxacin

MBGNs  Mesoporous bioactive glass nanoparticles
MgO Magnesium oxide

Mlit Malachite

MMP Matrix metalloproteinases

MNA Microneedle array

mPEG-  Thioketal-linked methoxy poly(ethylene glycol)
TK

MRSA Methicillin-resistant Staphylococcus aureus
mSioO, Mesoporous silica

MSNs Mesoporous silica nanoparticles
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MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide

Na-ALG  Sodium alginate

NADPH Nicotinamide adenine dinucleotide phosphate

NIR Near infrared

NPs Nanoparticles

PCL Polycaprolactone

PD Pinus densiflora

PDA Polydopamine

PDMS Polydimethylsiloxane

PEO Polyethylene oxide

PLGA Poly(lactide-co-glycolic acid)
PVA Poly(vinyl alcohol)

PVP Polyvinylpyrrolidone

ROS Reactive oxygen species

SF Silk fibroin

Si Silica

Si NPs Silica nanoparticles

SPG Schizophyllan

SWCNTs Single-walled carbon nanotubes
TA Tannic acid

TiO, Titanium dioxide

TSD N-[3-(trimethoxysilyl)propyl] ethylene diamine
VO, Vanadium dioxide

V,0; Vanadium(ui) oxide

V.05 Vanadium(v) oxide

Van Vancomycin

VEGF Vascular endothelial growth factor
WB Wild bilberry

Y,0;3 Yttrium oxide

Zn Zinc

ZnO Zinc oxide

710, Zirconia
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