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Creating taxonomically-informed metabolome
libraries for any species using the pubchem.bio
R package

Corey D. Broeckling

Annotation remains a significant challenge in metabolomics, in large part due to the enormous structural

diversity of small molecules. PubChem represents one of the largest curated chemical structure data-

bases, with more than 122 000 000 structures, supplemented by extensive biological metadata provided

by numerous external sources. While many of these structures are relevant to metabolomics, a majority

are unlikely to be measured in a typical metabolomics experiment. This article describes the R package,

pubchem.bio, which enables users to: (1) download the metabolomics-centric subset of PubChem onto

their local computer, (2) build a metabolomic structured library of biological compounds in PubChem, (3)

develop custom metabolite structure libraries for any species or collection of species using selected or all

available taxonomic data in PubChem and (4) define a core biological metabolome, comprising metab-

olites plausibly found in any species. Species-specific metabolomes are enabled through the adoption of

a lowest-common-ancestor chemotaxonomy approach, which is implemented by associating PubChem

CIDs into the NCBI Taxonomy database hierarchy, enabling extrapolation of the taxonomic range beyond

the species reported. This package is available via CRAN, and can be used to simplify the annotation

process and embed biological metadata into the annotation process.

Introduction

A critical step in any mass spectrometry-based metabolomics
workflow is ‘annotation’ – the process of assigning chemical
structures to chromatographically coupled mass spectrometry
signals. The annotation task has been considered as one of
the largest challenges in metabolomics since the field’s incep-
tion,1 and remains problematic today.2–4

There have been innumerable approaches designed to
improve annotation accuracy. One of the major challenges in
metabolomics annotation is appropriately defining the chemi-
cal search space for any given untargeted metabolomics experi-
ment. The full theoretical chemical search space has been esti-
mated to be on the order of 1060 potential structures at a mole-
cular weight of 1000 or less.5 PubChem is one of the largest
publicly available repositories for small molecule structures,
with more than 122 000 000. This size makes it one of the
most comprehensive structure databases available, but there
are many structures in PubChem that are unlikely to ever be
observed in most metabolomics experiments. PubChem Lite6

was designed to extract the compounds that are most likely to
be observed, with a focus toward support for non-target ana-
lysis or exposomics experiments.

Numerous biological databases have been developed for
metabolomics research as a way of restricting the chemical
structure search space, each with a different focus. If a study is
focused on clinical samples, the Human Metabolome
Database7 is an invaluable resource. For natural products,
Coconut,8 Lotus,9 NPASS,10 and others are available. These
databases are extremely valuable in cataloging the existing
known chemical space, particularly for specialized metab-
olites. However, there are relatively few species for which a
comprehensive database exists, due to the effort necessary to
compile databases from the literature and the incredible diver-
sity of life. Some of the natural product databases explicitly
link chemical structures to taxonomy, enabling taxonomy fil-
tering, but these databases are biased toward natural products
and therefore not inclusive of more highly conserved meta-
bolic pathways.

Taxonomy has been shown to be a useful piece of metadata
to include in annotation approaches.11,12 An ideal metabolo-
mics library for a given biological sample would include all the
potential small molecules that would plausibly be found in a
given sample, with as few extraneous compounds as possible.
This is feasible through manual effort, but remains a cumber-
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some task.13 PubChem14 has become not only a vast repository
of chemical structure data, but also a vast repository of associ-
ated biological metadata, incorporating metadata from meta-
bolomics, metabolic pathway, and natural product databases.
The pubchem.bio R package described in this manuscript is
an informatic resource which streamlines the building of bio-
logical and taxonomically informed metabolite libraries from
PubChem in support of metabolomics, and other applications
that can benefit from a comprehensive list of plausible small
molecules found in a given species.

Approach

In this article, the term ‘metabolite’ is used to be inclusive of
all small molecule structures that are linked to biology, includ-
ing traditional metabolites, but also lipids, polysaccharides,
and even exogenous compounds such as pesticides, which are
frequently found in biological metabolome libraries and
pathways.

PubChem is an accessible and freely available data source,
which incorporates a wealth of metadata. The pubchem.bio
functions were executed on August 22, 2025, to generate
summary statistics presented here. There are several biological
classes of metadata built into PubChem, including:

1. Data source: PubChem can be subset based on which
organizations deposited structures. 885 different data sources
have contributed. Suitable biological data sources include
HMDB, CheBI, Metabolomics Workbench, Lipid Maps, and
others. Any data source can be selected, but the default values
are those considered to clearly fit the category of ‘biological’.

2. Pathways: 10 organizations have deposited pathway data.
The presence of a chemical in a pathway means that there is
biological transformation which either produces or consumes
it. These chemicals will be either native biological metabolites,
or metabolic products of enzymatic processes acting on well-
characterized exogenous compounds.

3. Taxonomy: 11 organizations have submitted taxonomy/
structure relationship datasets to PubChem in the form of
‘Annotations’. For example, the Natural Product Activity and
Species Sources (NPASS) has 540 494 annotations in PubChem.
The Lotus database has submitted 434 081 annotations, where
an ‘annotation’ is defined as a relationship between a taxon-
omy identifier and a pubchem structure.

The pubchem.bio package is designed to utilize all these
data sources to enable efficient and comprehensive custom
metabolome library creation through PubChem centralization.
The vast majority of the functionality of pubchem.bio is
arranged as five R functions. These functions retrieve,
organize, and subset PubChem data to enable the generation
of custom taxonomically informed libraries.

get.pubchem.ftp: The puchem.bio R package accesses
NCBI’s PubChem and Taxonomy databases programatically,
downloading data primarily through the FTP interface. The
downloaded files are stored in a temporary directory,
unzipped, and parsed, retaining only the portions of the data
needed. Several derivative datasets are generated, each indexed
by PubChem CID or taxonomy ID, and stored internally as
data.table15 formatted data frames, enabling fast searching
and filtering. These files are saved and retained to a local drive
determined by the user. This function only downloads and
parses data into smaller, more easily managed chunks, to
enable further downstream handling.

build.cid.lca: This function utilizes all selected sources of
taxonomy data, which can include both pathway data such as
WikiPathways,16 which is sometimes built for a specific
species, and the taxonomic annotations from PubChem’s data
sources, such as the Lotus database.9 To make full use of these
taxonomy data, pubchem.bio organizes each PubChem CID
into the nested NCBI Taxonomy17 hierarchy. This network
structure (also stored as a data.table) enables the extrapolation
of metabolite (CID) presence even in species for which the
metabolite has not been reported, through the notion of
lowest common ancestor (LCA). The LCA approach has been
adopted for metaproteomics studies as a mechanism to deal
with redundancy in peptide sequence within a given taxo-
nomic clade.18 The pubchem.bio package adapts this logic for
small molecule structures, enabling inference on the plausible
metabolites for any given species.

Table 1 provides an example of how LCA is assigned. Note
that not all taxonomic levels are displayed, for simplicity. If
one wished to determine the lowest common ancestor for cap-
saicin (in blue, Table 1), the metabolite in peppers which pro-
vides their spicy heat, all biological species that are known to
contain capsaicin are catalogued (only a small subset is shown
in Table 1). The full taxonomic hierarchy is then generated for
each species, and the lowest taxonomic level that contains all
examples of capsaicin is assigned at the LCA of 4071, the
genus Capsicum. Alternatively, consider atropine, in red.

Table 1 Example demonstrating inference of the LCA from taxonomy data

Paper Analyst

Analyst This journal is © The Royal Society of Chemistry 2025

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

5 
 2

02
5.

 D
ow

nl
oa

de
d 

on
 0

7.
01

.2
6 

20
:2

0:
33

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5an00914f


Atropine is found in both Atropa and Datura species, and the
lowest common ancestor is Taxonomy ID 424551, the subfam-
ily Solanoideae, since each of the two species have a distinct
genus and tribe. The Ceratodictyol B example is more complex,
and will be discussed in the results.

This output cid.lca dataset generated by the build.cid.lca
function is both saved with results from get.pubchem.ftp and
returned to the R console, and is used for downstream library
creation. This function is separated from get.pubchem.ftp only
for practical reasons, as the function takes a bit of time to run.

build.pubchem.bio: With all of the data now organized
from the first two functions, the build.pubchem.bio function
will generate a data.table containing only metabolites that are
found from the selected data sources, which may include
structure databases, pathway databases, and/or taxonomy–
structure databases. The returned dataset will include CID,
compound name, molecular formula, monoisotopic mass,
SMILES structure, InChIKey, etc. Additionally, this function
enables the calculation of all physicochemical properties avail-
able through the rcdk package.18 The dataset is both saved in
the local directory and returned as an R data.table.

build.taxon.metabolome: The pubchem.bio dataset created
in the above step contains all biological compounds from
PubChem. The build.taxon.metabolome function uses all
selected taxonomy data to filter and/or score all biological
compounds that have an assigned LCA. The user supplies one
or more target taxa, using a NCBI Taxonomy number. For each
taxon identifier, the full taxonomic hierarchy is extracted, and
all CIDs that have a lowest common ancestor that matches any
of the taxon’s hierarchy levels are assigned a score of ‘1’. All
CIDs that have taxonomy data assigned, but do not fall within
the selected taxonomic hierarchy are assigned a score between
‘0’ and ‘1’, based on how many taxonomic levels separate the
metabolite lowest common ancestor from the ‘root’ of the taxo-
nomic tree. Put another way, parent taxa up to the lowest
common ancestor inherits the metabolome of child taxa, and
then traverse the tree using the proposed scoring system. In
this way, highly specialized metabolites from Streptomyces, for
example, are assigned a low taxonomy score if the user is
building a Solanum metabolome library. All CIDs that have no
taxonomic data are left with a taxonomy score of NA.

Table 1 demonstrates the cid.lca theory. If we build a taxon
metabolome for Datura metel, our exported metabolome will
contain both atropine and capsaicin. However, atropine will
have a taxonomy score of ‘1’, while capsaicin will have a taxon-
omy score between 0 and 1. Since capsaicin is found in a
genus (Capsicum) that is relatively closely related to Datura
metel – they share a common subfamily – the taxonomy score
will be larger, but less than 1. In practice, the assigned score
for capsaicin, when building a library for Datura metel, is 0.76,
reflecting the fractional number of taxonomic levels that separ-
ate the two, relative to the total number of taxonomic levels.

Note also that if one were to build a taxon metabolome
library for the genus Capsicum, the metabolome would contain
atropine with a taxonomy score of 1, since the lowest common
ancestor for atropine – Taxonomy ID 424551 – is a direct taxo-

nomic ancestor of the Capsicum genus. This may not, at first
glance, appear to be a desirable result. However, this result
captures evolutionary concepts. Atropine is found in multiple
genera within the subfamily Solanoideae. We must either
assume that (1) the only species atropine is found in are those
listed or (2) that the species that have been found to contain
atropine are some subset of all species that contain atropine,
and that there are missing data in PubChem. These missing
data are due to some combination of (a) unpublished or unca-
talogued studies that demonstrate the absence of atropine from
other Datura species, and (b) studies looking at atropine in
other species which have yet to be performed. If no one has
published on the presence or absence of atropine in Datura
ferox, for example, we have no evidence that atropine is absent
in that species.

The pubchem.bio package uses the LCA approach to infer
metabolome content for any species, whereby one can assume
that the data listed in PubChem are a subset of the species in
which atropine can be found. Rephrased, we do not currently
have complete data, so we must infer the taxonomic true range
of each given metabolite. Given that all occurrences of atropine
are found within the subfamily Solanoideae, we infer that any
member of this subfamily may plausibly have evolved the
capacity to synthesize atropine. There is of course also a practi-
cal reason for wanting to be inclusive in our metabolome
search space – if we are measuring the metabolome of
peppers, and atropine is present in some samples, we want to
identify it as such, as it can have toxic properties.

build.primary.metabolome: In theory, the PubChem metab-
olites that have been assigned an LCA of ‘1’ – the root of all life
– can be considered a list of primary metabolites contained
within PubChem. This function enables users to extract all
highly conserved metabolites from the full pubchem.bio output.

Additionally, there are currently four ‘export’ functions, for
exporting the full dataset in .csv format, or in formats compati-
ble with Sirius or MSFinder.

Results

The pubchem.bio package was demonstrated on August 22,
2025. All processing reflects performance on a Windows 11 PC,
with 64 GB RAM, a 1.0 TB SSD hard drive, and a 13th Gen
Intel Core i9-13900K 3.00 GHz processor. The get.pubchem.bio
function was run to retrieve and store data for later use. The
downloaded content occupies approximately 18 GB on the
disk, although users should ensure there is at least triple that
to accommodate temporary files during processing. The get.
pubchem.ftp function took approximately 2.5 hours to run.

There are 885 total sources of PubChem data. For this
example, five were considered as biological databases:
Metabolomics Workbench, Human Metabolome Database
(HMDB),7 ChEBI,19 LIPID MAPS,20 and MassBank of North
America (MoNA).21 Users can select any of the 885 databases
as source databases. There are ten sources of pathway data,
with PathBank,22 PlantCyc,23 Plant Reactome,24 BioCyc,25
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Reactome,26 and WikiPathways16 each listing more than 10 000
records. All pathway sources were used, and any taxonomy-
assigned pathway was incorporated into the CID–LCA assign-
ment. Eleven sources provide taxonomy–structure (CID) pairs,
with FooDB,27 NPASS,10 LOTUS,9 HMDB,7 KNApSAcK,28 and
NPA29 each supplying more than 10 000 records. For this
example, only LOTUS was used, but the user is free to use any
or all of the sources. CID–taxonomy associations within
PubChem amount to 3 857 536 records, including 434 081
from LOTUS. Adding taxonomic associations from pathway
sources added an additional 375 375 CID–taxonomy pairs,
bringing the total to 809 456. The build.cid.lca function took
approximately 1.1 hours to run, resulting in 247 050 CID–LCA
pairs. Some pathways and biological data sources do include
non-biological compounds, such as pesticide degradation
pathways in plants. It should be noted that this package does
not remove those compounds from the resulting structure
library.

There are numerous ‘NA’ values in the taxonomy hierarchy
– not all species have assignments at each level. In fact, the
only two taxonomic levels that have no missing values are
species and domain. This can be seen in Table 1, specifically
for the Ceratodictyol B example.

In preliminary CID–LCA assignments, there were nearly 10
000 metabolites that were demonstrated to have a listed lowest
common ancestor of ‘1’ – the root of all biology. These could
be interpreted as being the most highly conserved, and there-
fore classified as ‘primary’ metabolites. It was, however,
observed that sparse and spurious CID–taxonomy associations
can generate false positive assignments with unexpectedly
high LCA taxonomic assignments. For example, Ceratodictyol
B was assigned an LCA of ‘2759’, as depicted in Table 1.
Taxonomy ID 2759 is ‘Eukaryota’, or eukaryotes. Assignment to
this level would result in assignment of Ceratodictyol B to
every eukaryote metabolome library. This occurred due to
Ceratodictyol B being reported from precisely two species, each
listed by two sources: a marine sponge, Haliclona cymaeformis,
and a red algae, Ceratodictyon spongiosum. Ceratodictyon spon-
giosum can form symbioses with sponges, calling into question
whether Haliclona is producing Ceratodictyol B, or harboring
Ceratodictyon, which is producing Ceratodictyol B. In fact, the
paper describing these results does not distinguish between
the two.30 This result can therefore be interpreted as a false
positive assignment of LCA at a much higher taxonomic level
than is warranted. The LCA concept is built on a premise that
each taxon–CID association reflects phylogeny, while, in prac-
tice, the LCA approach implemented is dependent on taxon-
omy as a surrogate, and the case in question reflects complex
cross-taxa symbioses that taxonomy doesn’t capture well.

To enable customization in the assignment of LCA, the
build.cid.lca function was provided an option, ‘min.taxid.
table.length’, which can prevent such spurious LCA assign-
ments. In the case of Ceratodictyol B, it can be seen that there
are 2 taxonomic identifiers at each level – species, genus,
family, phylum, and kingdom, and only when we arrive at
domain do we find that the number of unique taxonomy iden-

tifiers drops to 1. There are very few levels of unique taxonomy
ID count across taxonomy levels, which is used as an indicator
that there are few records that are taxonomically (and presum-
ably phylogenetically) isolated from each other. For each taxo-
nomic level, the number of unique taxonomy identifiers that
map to the CID is calculated, and the frequency examined. All
instances with a frequency of ‘0’ (all NA) are removed. If the
length of the resulting tables is less than or equal to min.taxid.
table.length, then the LCA is assigned within the lowest taxo-
nomic level with the most frequently observed n.taxa, where n.
taxa is the number of taxa within that taxonomic level. The
default value for min.taxid.table.length is ‘3’. In this way,
metabolites which are observed in very few taxa that are very
disparate in their taxonomic distance from each other can be
assigned to two (or infrequently more) LCAs.

In the example depicted in Table 1, Ceratodictyol B is found
in two species, genera, families, and phyla. As such, the most
frequently observed n.taxa is ‘2’. The lowest common taxo-
nomic level for all taxonomic levels with n.taxa = 2 is species,
so the LCA is assigned within the level ‘species’. In this case,
there are two species, and Ceratodictyol B is assigned two LCA
values, one for each species. Hypothetically, if there were three
Ceratodictyon spp. linked to Ceratodictyol B, the LCA would be
assigned within the level ‘genus’ instead. Since there is still
only one species within the genus Haliclona, the first LCA
would still be assigned to the species Haliclona cymaeformis
(taxonomy ID = 1385788). For the second taxa set, there are
three species of Ceratodictyon, the LCA for which would then
be assigned at the genus level (taxonomy ID = 38330).

After running the build.cid.lca function, setting the min.
taxid.table.length equal to three, 2 859 metabolites were
assigned an LCA equal to 1. When considering the construc-
tion of in-house libraries of metabolites, this list can be used
to ensure that the investment in metabolite standards is spent
on metabolites most likely to be observed across all sample
types. The full table of assigned primary metabolites can be
regenerated at any time by using the pubchem.bio package,
ensuring that as the data in PubChem grow, so can the list of
primary metabolites.

The build.pubchem.bio function was used to create a bio-
logical metabolome library, using default values, which
include the use of the biologically associated datasource
including Metabolomics Workbench, Human Metabolome
Database (HMDB), ChEBI, LIPID MAPS, and MassBank of
North America (MoNA). XLogP, AcidicGroupCount,
BasicGroupCound, and TPSA for each metabolite were pre-
dicted using rcdk.18 This biological subset of PubChem took
approximately 1.1 hours to build, and resulted in 1 268
778 metabolites. The molecular weight distribution of metab-
olites is clearly altered between PubChem (Fig. 1a) and the
pubchem.bio dataset (Fig. 1b).

Fig. 1c plots the relationship between the number of taxa
that map to a given metabolite and the number of metabolites
that also have an LCA of ‘1’ (root). A strong log-linear relation-
ship is observed at taxa counts above 25, before dropping
between 25 and 28 and then falling rapidly above 28. These
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inflection points in the curve represent some combination of
undersampling of taxa–structure relationships, and the loss of
metabolic conservation across taxa – we cannot disentangle
the two from the available data. The default value for assign-
ment of a metabolite as ‘primary’ in this function is therefore
conservatively set to 25, although this value is a variable in the
function that can be further refined as more and more data
are incorporated into PubChem. At a minimum frequency of
25 taxonomic occurrences, there are 1069 metabolites con-
sidered as primary. This value falls between the ∼200 reported
recently in a survey of mammalian metabolomics data31 and
the ∼6000 reported in a genome-informed approach.32 As can
be seen from Fig. 1c, even within the pubchem.bio package,
the value can range from several hundred to over 2000. This
package can help to inform on core metabolic functionalities,
but is not going to provide an unambiguous answer to this
important evolutionary question.

To demonstrate the utility of taxonomy filtering and
scoring, a food example is considered. Salsa is comprised
largely of tomato, pepper, cilantro, onion and garlic. These
foods map to Taxonomy database IDs of 4081, 4072, 4047,
4679, and 4682. Building the salsa metabolome from these
five ingredients took 6.5 minutes. For the ingredients listed
above, there were 17 162, 17 058, 16 895, 17 062, and 17
027 metabolites mapped, respectively. In total, 18
116 metabolites are mapped to these five species, from four
different genera. Tomato and pepper are closely related, and
98% of all tomato metabolites are also in the pepper metabo-
lome. Garlic and onion are also closely related to each other,
sharing the same genus, Allium. 99.7% of garlic metabolites
are also present in the onion metabolome. Tomato and garlic
are more distantly related, with a common taxonomic ancestor
at the kingdom level, Viridiplantae. 97% of all tomato metab-
olites are also present in the garlic metabolome. A total of 243

Fig. 1 pubchem.bio filtering changes the molecular weight distribution of pubchem structures. (a) The molecular weight distribution for all struc-
tures in PubChem is dominated by structures with monoisotopic weight < 500 Dalton. (b) After filtering for biological compounds, a new peak
around 1000 emerges, derived from larger lipids and natural products. (c) The relationship between the number of conserved ‘primary’ metabolites
– those with an assigned LCA of ‘1’, the root of all cellular life – and the number of assigned taxa. (d) The distribution of monoisotopic masses for all
metabolites assigned an LCA of ‘1’ and which have at least 25 taxonomic assignments, representing a conservative estimate of the conserved
‘primary’ metabolome size.
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792 metabolites are assigned an aggregate taxonomy score,
with scores ranging from 0 (extremely unlikely to be found
given the five species listed) to 1 (highly plausible, as they are
metabolites that map to at least one of the species).
Intermediate scores represent increasing probability that a
metabolite may be present, given imperfect knowledge of
species-specific metabolism (Fig. 2). Of course, the small mole-
cule composition of salsa will ultimately be additionally
impacted by cooking and preservation, so the reported library
should be viewed as the potential small molecule components
of salsa which are derived directly from the ingredients, not
comprehensive of, for example, Maillard products that may
form.

Usage discussion

The pubchem.bio package is performing tasks that would take
humans much longer to do. The process of assigning the
lowest common ancestor to PubChem structures is relatively
novel, but based on the same principles as chemotaxonomy –

a field with decades of applications,33 and highly similar to
that used in metaproteomics studies.34 The LCA approach
turns a limitation of chemotaxonomy – that even specialized
metabolites are often not unique to a given species – into a
useful trait, enabling generalization of metabolite distri-
butions for creating more comprehensive metabolome
libraries for any species, even those poorly studied in the past.
However, it must be noted that the LCA approach is difficult to
validate and optimize, given the incomplete knowledge of any

given biological sample’s metabolic components. Default
values are a reasonable starting point for users, and should
provide relatively conservative results – a database that utilizes
all available data to generate a comprehensive list of analytes
that may plausibly be observed.

Taxonomic and biological data in PubChem are both
incomplete (false negative) and can contain errors (false posi-
tive). Each of these types of errors can result in inaccurate
taxon-specific metabolome data and assigned LCA. For
example, capsaicin is widely considered to be a specialized
metabolite of peppers, genus Capsicum. The ‘taxonomy’
section of the PubChem webpage for capsaicin lists numerous
Capsicum species, but also the prokaryote Streptomyces roseo-
fulvus, submitted by the NPASS database. The original refer-
ence supporting this association is not apparent, so it is
difficult to evaluate this claim. That said, if the user selects
both Lotus and NPASS databases when building the LCA, the
LCA for capsaicin may be ‘1’ – the root of all biology, depend-
ing on the assigned ‘min.taxid.table.length’ value used.
However, if the users opt to use only the more selective Lotus
database (the current default value), the LCA is returned as
‘4071’, the Taxonomy ID for the Capsicum genus.

Biological databases and pathway databases may each
incorporate exogenous compounds into their data in a taxon-
omy-informed manner. Capsaicin can be degraded by E. coli,
for example, and therefore can be reported as an E. coli metab-
olite, despite the fact that E. coli is not known to be able to syn-
thesize capsaicin. In theory, if all reaction data for a given
species were available in computer readable format, one could
remove metabolites that are not considered metabolic pro-
ducts of a reaction – this is an opportunity for additional devel-
opment in the future.

The taxonomy scoring applied here is based on taxonomic
relationships as described by decades of taxonomic research.
It should be noted that the taxonomic approaches are not
necessarily consistent across all clades. While taxonomy is a
representation of phylogeny, the scoring algorithm of
pubchem.bio is based on what must be considered an imper-
fect taxonomic representation of phylogenic time and distance
between species.

The work here demonstrates that the pubchem.bio package
is able to return meaningful results to users, enabling users to
create taxonomy-informed libraries in an automated manner.
This does not mean that the process is completely objective –

the user will need to select which sources to use and to assign
an appropriate ‘min.taxid.table.length’ value, for example. The
‘correct’ metabolome library is one that serves the need of the
user, whether that be the minimal most confident metabo-
lome, the maximum plausible metabolome, or some inter-
mediate level. The package is designed to enable users to
build the library they need, depending on the circumstance. As
the resources in PubChem grow, so does the ability for
pubchem.bio to convert that collected knowledge into metabo-
lome libraries.

The pubchem.bio package fills a functional void. There are
no other resources to enable rapid generation of customizable

Fig. 2 The metabolome for the five species mixture for major salsa
ingredients contains approximately 18 116 metabolites that map to those
species. These metabolites are assigned a score of ‘1’. All other metab-
olites that have taxonomic mapping are assigned values between 0 and
some value less than 1, reflecting the taxonomic distance to the target
species. Biological metabolites with no mapped taxonomy are not
assigned a score. A total of 243 792 metabolites have been assigned a
taxonomy score.

Paper Analyst

Analyst This journal is © The Royal Society of Chemistry 2025

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

5 
 2

02
5.

 D
ow

nl
oa

de
d 

on
 0

7.
01

.2
6 

20
:2

0:
33

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5an00914f


metabolome libraries for any species. While individual
researchers have manually done this in the past, pubchem.bio
enables what would have taken hours, at best, to be done in
minutes. The most similar tool available, an R package called
tima, available via zenodo,35 performs comparable tasks to
pubchem.bio, but does so using more limited resources, and
does not appear to utilize a lowest common ancestor extrapol-
ation approach. There are also tools for retrieving and hand-
ling existing structure libraries. The CompoundDB R package,
which pubchem.bio can export metabolite libraries to, is
useful for retrieving and storing structure data from a few
select well-curated database sources, such as HMDB, and pro-
vides an extensible data structure to integrate into other
RforMassSpectrometry packages.36

Conclusion

Using freely available data from PubChem, derived through
many invaluable sources that have been contributed by indi-
vidual database efforts, the pubchem.bio package enables the
creation of metabolomics-ready libraries fully informed by bio-
logical and taxonomic digital resources. After an initial setup
phase requiring several hours of computer time, each new
species metabolome library can be generated in minutes.
These species-specific metabolome libraries have the potential
to dramatically improve annotation accuracy.

Future directions

Additional metadata are downloaded as part of the get.
pubchem.ftp function, notably MeSH data, full CID-pathway
membership details, CID–substance relationships, synonyms,
and CAS numbers. These metadata have potential utility in,
for example, pathway analysis.37 The pubchem.bio package
makes no effort to incorporate any additional exogenous com-
pounds beyond what is already incorporated into biological
databases such as CheBI or HMDB. Future work may incorpor-
ate the data from PubChem Lite, which is focused on these
exogenous analytes. Additionally, the use of reactions rather
than pathways may enable the removal of exogenous catabolic
reactants from the species-specific metabolome output, when
desired.
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