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Mass-customization of organic photovoltaics and
data production for machine learning models
precisely predicting device behavior
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High-throughput experimentation (HTE) combined with machine learning (ML) has emerged as a

powerful tool to accelerate material discovery or optimize fabrication processes. However, in the

photovoltaics field, only a few studies have successfully applied this approach using industrially relevant

techniques, such as the roll-to-roll (R2R) process. We developed a universal and extendable data

structure for ML training that accommodates upcoming materials, while retaining compatibility with the

existing dataset. Using the MicroFactory platform, which enables mass-customization of organic

photovoltaics (OPVs), we fabricated and characterized over 26 000 unique cells within four days. To

guide the selection of the ML model for precisely predicting device behavior, photovoltaic parameter

and J–V prediction models to forecast device parameters and J–V curves, respectively, were developed.

The Random Forest model proved to be the most effective, achieving a PCE of 11.8% (0.025 cm2)—the

highest for a fully-R2R-fabricated OPV. By integrating accumulated datasets with smaller new-

component datasets, we enhanced model performance for PM6:Y6:IT-4F and PM6:D18:L8-BO systems,

showing that models trained on binary systems can predict ternary device performance and enabling the

development of generalized ML models for future high-performance materials.

Broader context
Combining high-throughput experimentation with machine learning (ML) accelerates material discovery or optimizes fabrication processes through data-
driven decision-making. Previous studies in photovoltaics have explored ML-driven research using roll-to-roll (R2R) technology, but no systematic approach has
guided the selection of ML models to precisely predict device behavior. The next critical step is to forecast device properties of new materials using insights
from existing ones, which requires an expandable data structure. Here, we present a universal and expandable data structure designed to enhance ML models
and develop models that enable accurate prediction of photovoltaic parameters and J–V characteristics. Using the MicroFactory platform, we fabricated over
26 000 unique organic photovoltaics (OPVs), generating datasets that were used to train these models. Among the models tested, Random Forest proved to be
the most effective model, and its predicted formulation led to a PCE of 11.8% for fully-R2R-printed OPVs. Moreover, we demonstrated that models trained on
binary systems can successfully predict the performance of ternary devices, highlighting how accumulated, compatible datasets enable the development of
generalized ML models with broad applicability to new material systems.
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Introduction

Organic photovoltaics (OPVs) hold immense promise as a clean
and renewable energy source due to their myriad advantages,
including being lightweight and flexible,1 non-toxic2,3 and
colour-tunable.4–6 Recent advances driven largely by materials
discovery have pushed the power conversion efficiencies (PCEs)
of OPVs beyond 20%.7–11 However, a gigantic parameter
space—encompassing an astronomical number of material
and processing parameter combinations—remains unexplored,
leaving much of the potential of OPVs untapped.

High-throughput experimentation (HTE) has emerged as a
promising avenue to address the limitations of conventional
labor-intensive experimentation. It allows for the rapid screen-
ing of large combinational parametric libraries with fast char-
acterization tools, thereby reducing labor, time and resource
requirements. By combining HTE with machine learning (ML),
vast datasets can be efficiently processed, accelerating material
discovery or optimizing fabrication processes through data-
driven decision-making.12 However, many ML-driven studies
in photovoltaics have relied on fabrication techniques incom-
patible with large-scale and mass production, such as spin
coating.13–18 It is difficult to utilize ML models trained with
data from industry-incompatible fabrication techniques for a
lab-to-fab transition. This is because such fabrication techni-
ques require the redevelopment of processing conditions spe-
cific to scalable manufacturing methods.19 Furthermore, high-
efficiency materials optimized under small-scale laboratory
conditions often fail to perform reliably in large-scale proces-
sing, emphasizing the need to develop materials tailored for
scalable manufacturing rather than modifying existing pro-
cesses to accommodate lab-optimized materials.20,21 While
some pioneering work has successfully demonstrated ML-
driven research with roll-to-roll (R2R) technology, an indust-
rially relevant method,22–24 no systematic study has been con-
ducted to give guidance for determining ML models for
accurately forecasting device behavior. Furthermore, the next
critical step is to predict the device behavior of new materials,
leveraging insights from existing materials. This requires an
expandable data structure for ML training to be able to accom-
modate new high-performance materials to be developed in the
future, a critical gap that is yet to be addressed.

Here, we present a universal and expandable data structure
designed to train ML models that continuously improve as
more data are accumulated, regardless of the OPV material
components. Through feature engineering, the training
features are crafted to accommodate new materials, while
maintaining compatibility with the existing dataset, enabling
ML models to develop a comprehensive knowledge of
OPV materials. Using the MicroFactory platform that mimics
industrial processes,24,25 we applied R2R slot-die coating
in a desktop machine to develop a manufacturing process
with minimum material usage and automated in situ formula-
tion. This approach allowed for mass-customization of
OPVs by continuously altering fabrication parameters and
formulations, while a R2R tester facilitated testing of the

completed devices, leading to the production of over 26 000
unique OPV cells.

The fabrication parameters and device outcomes were digi-
tized and used to train ML models. Using this unprecedented
amount of OPV data, we developed not only photovoltaic
parameter (PP) prediction models that forecast device para-
meters, but also J–V prediction models creating J–V curves of
untested devices. These models guided the selection of ML
models through systematic evaluation by screening various
algorithms, followed by hyperparameter optimization for pre-
cisely predicting device behavior. The Random Forest (RF)
model proved to be the most effective. Using the RF-predicted
formulation, we fabricated a device achieving a PCE of 11.8%, a
record-breaking efficiency for fully-R2R-fabricated OPVs.
Furthermore, we demonstrated that combining large, accumu-
lated datasets with smaller datasets from different material
systems improves ML model performance, showing that
models trained on binary systems can predict ternary perfor-
mance and supporting the creation of generalized models
capable of forecasting device behavior for new materials.

Results and discussion
High-throughput device fabrication/characterization using the
MicroFactory platform

In this study, we selected PM6 as a donor and L8-BO as an
acceptor material, and optimized the R2R device configuration
of PET (polyethylene terephthalate)/TCE (transparent conduct-
ing electrode)/PM6:L8-BO/BM-HTL-1/S315, as detailed in
Notes S1 and S2. The material structure, energy diagram, device
configuration, and resulting device performance are presented
in Fig. 1a–c and Fig. S1–S12 and Tables S1–S8. Additionally, the
effects of various additives, including 1,8-diiodooctane (DIO), 1-
chloronaphthalene (CN), 2-hydroxy-4-methoxybenzophenone
(2-HM), and 1,4-dichlorobenzene (DCB), were investigated,
but no significant impact on device performance was observed
(Fig. S11 and Table S7, SI). To efficiently generate a large
dataset, we developed the MicroFactory platform (Fig. 1d and
Fig. S13 and S14, SI) with resources from the 3D printing
community. In our previous work, we introduced a 3D-
printer-based slot-die coater as a lab-to-fab translation tool,26

which required only minimal modification to an existing 3D
printer. Building on this concept involves the construction
of a fully customized machine derived from a 3D-printing
framework, with operations governed by the open-source
G-code protocol. Additional technical details are provided in
Note S3.

With this optimized device configuration and the advanced
capabilities of the MicroFactory platform, we fabricated over
26 000 OPV cells across two experimental batches. These experi-
ments systematically explored fabrication parameters, with
each batch divided into multiple sub-batches to alter the
donor : acceptor (D : A) ratio or film thickness. We previously
reported a dual-feed deposition method to formulate solutions
in situ and a way to digitize active layer composition by
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introducing deposition density (DD) and total deposition den-
sity (TDD).23 DD is an absolute quantity of a component per
unit area (in mg cm�2), and TDD is the sum of the DDs of all
materials and shows a strong correlation with film thickness.
Due to the lossless nature of slot-die coating, DD can be derived
from deposition parameters and solution compositions. This
lossless deposition significantly reduces material consumption

compared to traditional spin-coating methods. In our experi-
ments, we used only 10.3 mg of PM6 and 12.2 mg of L8-BO per
1000 devices, corresponding to B964 devices per mL of
solution for both materials. In contrast, spin coating typically
yields only 50–58 devices per mL. This high material efficiency
highlights the practicality of our approach for screening new
materials, even when available sample quantities are limited.

Fig. 1 Materials, energy diagrams and structure of R2R OPV device and illustration of MicroFactory platform. (a) Chemical structures of materials used in
this study. (b) Illustration of detailed device structure. (c) Energy diagram of fully-R2R-fabricated OPVs. (d) A 3D schematic of the MicroFactory platform
featuring a custom-built automatic R2R coater and tester, along with a database that stores all collected data. The inset image in Fig. 1d illustrates the
fabrication of an active layer with a gradient composition, represented by a rainbow-colored film, in a single deposition process. By employing
programmable syringe pumps, two solution flows were controlled linearly, and the solutions were mixed in situ and deposited onto a continuously
moving substrate. Nine deposition parameters were collected and stored in a database during deposition. Subsequently, the devices were automatically
characterized using the R2R tester until a specified number of measurements had been made. The data collected from three coating runs and one test
run were integrated into one consolidated dataset based on the position of the roll (device position).
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While our previous study required several months to collect
data from about 2000 devices,23 the MicroFactory platform
enabled the high-throughput fabrication of over 10 000 devices
in one day by one researcher, with testing completed the next
day. Fabricating and characterizing over 26 000 OPV cells took
only four days with the coater and tester operating in parallel.
All data were saved online and could be simply combined using
Python scripts. Although we paused fabrication for data analy-
sis, this unprecedented fabrication capability demonstrates
significant potential for creating big data on OPV manufactur-
ing parameters.

Fig. 2a presents individual PPs, DD of each material and L8-
BO/PM6 ratios for 26 422 devices based on the device position
on a 150-m-long substrate (Fig. 2b). Notably, failed devices were
intentionally fabricated as markers between sub-batches and
used to verify the combined dataset of fabrication and testing
parameters. As it is impossible to display J–V curves for all
devices, we showed J–V curves for the four most characteristic
devices with the highest PPs in Fig. 2c and Table 1. The best
device achieved a power conversion efficiency (PCE) of 11.6% at
a D : A ratio of 1 : 1.13 (Fig. S15, SI), similar to the optimal
formulation found in a previous study.27 Although this PCE is
already significantly higher than that of the best fully-R2R-
fabricated OPVs in the literature (Fig. S16 and Table S9, SI),
further improvement might be possible through ML-assisted
device optimization. However, the achievable PCE would
remain below 14.1%, a boundary determined by the best fill
factor (FF), current density (JSC) and open circuit voltage (VOC),
due to the inherent trade-offs among those photovoltaic para-
meters. However, identifying PP trends within a multidimen-
sional fabrication parameter space from such large datasets is
impractical for humans, necessitating the use of ML.

Developing ML models

Utilizing ML for data analysis involves several steps, as illu-
strated in Fig. 3a. With the data already collected, the next
important step is to design features as input parameters for ML
training. Extracting meaningful features from the available
data is common practice. As we previously reported, ML models
using simplified features, such as the DD of three materials,
were able to visualize their effects.23 However, we found that
this approach was not expandable for additional materials or
fabrication parameters. Hence, we designed generic and
material-specific features (DD of each material) that can accom-
modate upcoming materials. Although some features may look
like a duplication of another feature, this ensures that the data
can be used universally. Further details can be found in Note
S4, with descriptions of the data structures and features avail-
able in Tables S10–S12, and the corresponding numerical
values stored in Data S1 and S2.

After preparing and cleaning the data, ML models using
various algorithms were trained and compared for a given
multidimensional regression problem. Seven bagging and
boosting algorithms were initially selected for evaluation. Bag-
ging independently trains multiple weak learners in parallel
and averages their predictions, reducing variance and

improving stability. In contrast, boosting sequentially builds
weak learners, with each new model correcting the errors made
by its predecessor.28 These ensemble approaches are generally
less prone to overfitting, where a model learns the training data
too closely, including noise or fluctuations, resulting in poor
generalization to new data. To identify the best-performing
models, we optimized hyperparameters for each algorithm
using GridSearchCV with 5-fold cross-validation. This approach
systematically explores all possible combinations of predefined
hyperparameter values and evaluates performance to find the
optimal set. Due to the training time required for large num-
bers of up to two million hyperparameter combinations, we
used a small fraction (2.5%) of data for training (see Note S5 for
details, SI). Each hyperparameter combination was evaluated
based on performance metrics: coefficient of determination
(R2), mean absolute percentage error (MAPE), root mean
squared error (RMSE)23 and overfitting index (OI, defined by
the R2 of the test or validation dataset/R2 of the training dataset,
where lower values indicate stronger overfitting, whereas an OI
close to 1 implies that the model generalizes well). This
evaluation utilized 80% of the trained dataset for model train-
ing and the remaining 20% for model validation (Fig. S17, SI).
While RMSE is inherently tied to the scale of target variables,
making it a scale-dependent metric.29–31 MAPE can become
undefined or problematic when actual values are zero or near
zero, resulting in infinite or extreme values.30–32 In contrast, R2

offers a scale-independent evaluation,33 quantifying how well
the model accounts for the variance in data relative to total
variance. Given these considerations, we employed R2 as a
universal metric to determine the optimal hyperparameter
combination of models generated by each algorithm and to
enable cross-scale comparison between different prediction
models. The performance metrics for the best model from each
algorithm are shown in Fig. S18–S24 and Tables S13–S19 with
detailed discussions in Note S6. We found no outstanding
model, while the Ada Boost algorithm produced a model with
inferior performance to others.

Based on this evaluation, we selected one widely used
algorithm from each category for subsequent analysis: Random
Forest (RF) for bagging and Extreme Gradient Boosting
(XGBoost) for boosting. While optimizing most of the available
hyperparameters (Note S7, SI), we discovered that only a few
hyperparameters (max leaf nodes, max features and number of
estimators for RF, and learning rate, number of estimators and
max depth for XGBoost) made a meaningful difference across
all PPs. Therefore, we picked the top three most effective
hyperparameters and selectively showcased their impact on
model performance for predicting JSC and PCE (Fig. S25–S28,
SI). This information will serve as a comprehensive guide for
future hyperparameter optimization.

The models were then re-optimized with different dataset
sizes (2.5%, 20%, and 80%) using only the three most influen-
tial hyperparameters. We observed general agreement in the
optimal hyperparameters across various data fractions, indicat-
ing that hyperparameters optimized with a small dataset do not
require re-optimization for larger datasets (Fig. S29–S32 and
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Tables S20 and S21, SI). The final optimized hyperparameters
are shown in Note S8.

Performance of ML models for photovoltaics

While PCE is a key parameter of interest, we developed predic-
tion models for all PPs, including series resistance (Rs) and

shunt resistance (Rsh), for a comprehensive understanding of
device behavior based on fabrication parameters. Additionally,
we trained models to create J–V curves, referred to as J–V
prediction models, by introducing reading voltage values in J–
V curves as features in the training dataset. This approach
resulted in about 1.8 million data points from 71 data points

Fig. 2 PP distribution for a total of 26 422 devices, photograph of an actual device and J–V characteristics of four selected devices. (a) PP data of
individual devices, DD of each material, and L8-BO/PM6 ratios (w/w) across 26 422 PM6:L8-BO devices, organized based on their positions in the device.
These devices were part of 13 sub-batches in each batch, wherein various D : A ratios or film thicknesses were explored. The devices with 0% PCE were
intentionally fabricated as checkpoints at the end of each sub-batch. (b) Photograph of actual devices corresponding to B74.8 m for one batch. (c) J–V
characteristics of four selected devices, each showcasing the highest JSC, VOC, FF, and PCE values among 26 422 devices. The positions of each value are
indicated as stars on each J–V curve, except for the maximum PCE value. The maximum PCE, calculated to be 14.1%, was based on these values. Possible
MPPs of ideal devices with the PCE are depicted as purple stars for visualization using the equation, JMP = –PCE/VMP, where JMP is the current density and
VMP is the voltage of the MPPs within the voltage range 0–VOC V (0–0.884 V in this case). The larger and darker star indicates the MPP closest to the J–V
characteristics of device demonstrating the highest PCE.
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per J–V curve, with the model making 71 predictions using
various reading voltages. The selection of the best J–V predic-
tion models and their optimized hyperparameter combinations
are described in Note S9. Fig. 3 shows the predicted PPs and J–V
curves alongside the original measured J–V curves of three
randomly selected devices from the test dataset.

Therefore, our models offer three ways to predict PCE: (i)
direct prediction from the PCE prediction model, (ii) PCE
calculated from the predicted FF, VOC and JSC, and (iii) PCE

Fig. 3 Workflow overview in this study, J–V measured and predicted characteristics and predicted PPs of 3 randomly selected devices. (a) Illustration of
the comprehensive workflow in this study, comprising automated device fabrication and characterization, data storage of deposition and photovoltaic
data in a database, and ML application. (b)–(g) J–V actual and predicted characteristics of 3 randomly selected devices. Predicted PPs, including JSC, VOC,
Rsh, and Rs, are denoted by star-shaped markers and thick solid lines, derived from each best PP prediction model. Measured J and predicted J values
were obtained from actual characterization and the J–V prediction model, respectively. The MPP candidates were identified using the same method as
that described in Fig. 2b, and are represented by star-shaped markers, with larger ones indicating the MPP point closest to the actual J–V curve
(MPPclose). Additionally, the predicted JSC, VOC, Rsh and Rs values are represented as star-shaped markers or solid lines, derived from each best PP
prediction model. The predicted FFs are depicted as ivory-colored filled rectangles, with J and V values determined from MPPclose. Predictions were
generated using RF models for panels (b)–(d), and XGBoost models for panels (e)–(g).

Table 1 Summary of PPs of four selected devices exhibiting the highest
JSC, VOC, FF and PCE, among 26 422 devices

Device
JSC

(mA cm�2)
VOC

(V) FF
PCE
(%)

Rsh

(O cm2)
Rs

(O cm2)

Max JSC 22.0 0.805 0.548 9.70 1130 3.01
Max VOC 9.89 0.884 0.410 3.59 210 11.6
Max FF 17.4 0.831 0.727 10.5 996 2.00
Max PCE 20.5 0.835 0.677 11.6 5004 2.58

Paper Energy & Environmental Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

5 
 2

02
5.

 D
ow

nl
oa

de
d 

on
 3

1.
01

.2
6 

15
:1

1:
35

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ee02815a


9530 |  Energy Environ. Sci., 2025, 18, 9524–9537 This journal is © The Royal Society of Chemistry 2025

calculated from the created J–V curves. We found general
agreement in PCE from all three approaches, with similar
and exceptionally high R2 values (Fig. 3 and Fig. S33 and
Table 2 and Table S22, SI). This high model performance is
attributed to a consistently produced training dataset rather
than collection from multiple sources and optimized hyper-
parameters. Although any of these three approaches can predict
PCE, the J–V-based approach provides comprehensive device
insights while demanding more computing resources. How-
ever, once hyperparameters are optimized, training each model
with 1.8 million datasets of 10 input parameters takes only
15 min for RF and 7 s for XGBoost on a desktop computer,
suggesting that computing resources will soon no longer be a
limitation.

Despite XGBoost’s advantage over RF in training time due to
parallelized computing, it performed poorly in the J–V predic-
tion model, as observed in 3 and 15 additional randomly
selected devices (Fig. 3 and Fig. S34, SI). Although it still
achieves comparable model evaluation metrics to the RF model
(Fig. S35 and Table S23, SI), these metrics fail to capture
localized fluctuations in the predicted J–V curves, which
become evident only when the curves are plotted and compared
against experimental data. To further understand model beha-
vior, we calculated feature importance for both RF and XGBoost
J–V prediction models, where higher values indicate greater
influence on the model predictions. Among all features, V
showed the highest importance for both RF and XGBoost
models. However, as J and V are directly correlated in J–V
prediction, we excluded V from subsequent analyses to better
highlight the relative importance of the remaining features
(Fig. S36, SI). Our analysis revealed that ‘Acceptor Frac’ was
the most influential feature for both models, while TDD
showed much lower contributions. The lower importance of
‘Donor Frac’ is expected because it is linearly dependent on
‘Acceptor Frac’ (Donor Frac = 1 � Acceptor Frac), meaning that
the model relies primarily on one of the two to avoid redun-
dancy. Importantly, this does not imply that donor content is
less significant for device behavior, but rather that its contribu-
tion has already been captured through ‘Acceptor Frac’. These

results suggest that the D : A ratio plays a more critical role than
active layer thickness in predicting J–V characteristics. Taken
together, these results indicate that while RF and XGBoost
identified similar trends in feature importance, RF provided
more stable and consistent predictions across datasets. There-
fore, RF-based J–V prediction models were chosen for photo-
voltaic optimization.

We observed poor performances in resistance prediction
models. For the Rs model, this was attributed to a small
number of extreme outliers, possibly from measurement error
(poor contact during the measurement). After excluding about
3% of outliers, the model showed good performance with an R2

score of B0.88. The Rsh model underperformed because the
slope of the J–V curves at 0 V for good devices is close to zero,
making the inverse value highly sensitive to measurement
noise. Despite this, we found that the model proved useful in
predicting defective devices (Rsh o 336 O cm2, the bottom 30%
in this dataset) with an R2 score of 0.80.

Photovoltaic optimization using ML models

The J–V prediction ML model provides a whole new method of
device optimization. We could browse experimental parameters
with an interactive ML tool, instantly showing J–V curves of
virtually planned experiments (Video S1). The tool provides
insights into parameter-dependent device performance to
researchers, while full optimization was carried out program-
matically by generating all possible parameter combinations
and sorting by predicted PCE. However, this approach will
provide a global optimum point, so all top formulations would
be in the same zone and would miss serendipitous discoveries
of high-performance devices that may not be designed by
human knowledge.

To address this, we split all possible parameter combina-
tions using coarse data resolution (2 mL min�1 or mg cm�2) into
clusters and examined the optimum condition for each cluster.
Using K-means clustering, an unsupervised ML algorithm, we
created ten clusters (Fig. S37 and Table S24, SI). While the
clusters of evenly spaced datasets differ from the conventional
meaning of clusters, this provides a simple solution to

Table 2 R2 score, MAPE and RMSE of each PP (RJV
2, MAPEJV and RMSEJV) calculated from predicted J–V curves. R2 score, MAPE and RMSE of PP

prediction model (RPP
2, MAPEPP and RMSEPP) are provided for comparison

Model Dataset PP RJV
2 MAPEJV RMSEJV RPP

2 MAPEPP RMSEPP

RF Test JSC 0.980 13.6 0.720 0.982 21.0 0.683
XGBoost 0.979 248 0.737 0.984 21.1 0.650
RF VOC 0.953 1.46 0.037 0.964 1.38 0.032
XGBoost 0.893 2.04 0.056 0.965 1.46 0.032
RF FF 0.925 3.89 4.37 0.957 3.24 3.30
XGBoost 0.866 6.48 5.84 0.961 3.20 3.17
RF PCE 0.949 6.82 0.681 0.958 6.83 0.613
XGBoost 0.932 9.28 0.784 0.962 6.77 0.589
RF Rsh �7.26 98.7 13 364 �0.225 (0.839)a 75.5 (15.6)a 5146 (41.5)a

XGBoost �9.11 528 14 786 �2.65 (0.800)a 98.5 (16.4)a 8879 (46.3)a

RF Rs �0.001 10.4 17 552 0.028 (0.886)b 3816 (6.80)b 17 296 (0.773)b

XGBoost �0.001 15.4 17 552 0.028 (0.885)b 3751 (7.04)b 17 296 (0.775)b

a Metrics within the parentheses are derived from Rsh values belonging to the bottom 30% (o366 O cm2). b Metrics within the parentheses are
derived after excluding outliers (about 3% of entire dataset).
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grouping multidimensional data. Subsequently, we generated
all possible combinations with finer data resolution
(0.5 mL min�1 or mg cm�2, 6561 parameter combinations for
each cluster) around each cluster’s top formulation to refine
them further. Finally, we compared the Euclidean distance (ED)
(eqn (1)) of each cluster’s top formulation from the global-best
formulation in cluster 0 (Table S25 and Note S10 for details, SI).

Based on ED and predicted PCE, we fabricated devices using
the predicted formulation of the global best and that of the
cluster farthest from cluster 0. We found other clusters beyond
the selected cluster; however, parameters of those clusters were
challenging to fabricate due to excessively high flow rates,
which caused overflow issues and slightly lower PCEs. The
device results are shown in Fig. 4 and summarized in
Table 3. The global-best formulation achieved up to 11.8%

PCE, significantly higher than the best PCE for fully-R2R-
fabricated OPVs in the literature. Previously, the highest
reported PCE was 5.6%, as summarized in Fig. S16 and
Table S9. Only recently, we reported 9.35% using this high-
throughput setup,24 and this work marks another leap in the
record PCE for R2R-fabricated OPVs. This clearly demonstrates
how laboratory innovation and digital technologies such as ML
can accelerate OPV progress and potentially other printed
electronics.

With a view towards the eco-friendly manufacturing of OPV,
we tested the parameters using a non-halogenated solvent,
o-xylene (Xyl), and found Xyl-based devices performed compar-
ably (Fig. 4 and Table 3). These results show great potential for
the commercial application of fabrication parameters found in
this work. External quantum efficiency (EQE) spectra were

Fig. 4 Comparison of J–V characteristics and EQE spectra for R2R OPVs with top formulations under varied solvent conditions. J–V characteristics of
R2R OPVs with the top formulation in clusters 0 and 1 using processing solvents (a) and (c) CB and (b) and (d) Xyl, along with (e) and (f) corresponding EQE
spectra. Predicted J–V characteristics obtained from the J–V prediction model are also included for comparison.
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obtained after printing the silver electrode and encapsulating
the cells for manual testing (Fig. S37, SI). All four devices show
good agreement between JSC measured from the tester and
calculated from EQE spectra (Fig. 4e and f).

The future of data-driven and ML-assisted photovoltaic
research

While the MicroFactory platform has a unique strength in
thoroughly screening parameters of given materials, it is lim-
ited in the number of materials that can be automatically
processed in a batch. Conversely, robotic-arm-based HTE sys-
tems can screen a variety of materials, albeit with a relatively
lower throughput compared to the MicroFactory platform.12 It
would be ideal to combine two complementary HTE platforms
to accelerate the research cycle from material screening to the
development of manufacturing techniques. A key question is
whether large datasets can be reused to optimize newly devel-
oped materials. To address this, we aimed to create a data
structure that can accommodate upcoming high-performance
materials, enabling the continuous improvement of ML models
with accumulated data. To achieve this, we created generic
features as well as material-specific features. For example,
‘‘Donor Frac’’ in Table S11 may seem redundant, as it can be
easily derived from ‘‘PM6 DD’’ and ‘‘L8-BO DD’’. However, this
feature becomes crucial when introducing a co-donor or a
different donor material. Without such features, ML models
would not understand the relationship between a new donor
and PM6. By leveraging the established knowledge of known
materials, ML models could be trained for new materials with-
out re-creating extensive datasets.

To prove this hypothesis, we combined the large dataset
with smaller datasets, including new components, with one
new material-specific feature per component (see Fig. S2 for
detailed chemical structure, SI), trained RF-based models, and
compared their performance depending on the size of the
additional datasets. We first used a dataset created from our
previous study on a PM6:Y6:IT-4F ternary blend.23 In that case,
we simplified the system and minimized the number of

features to visualize all feature-dependent performances in
3D space, manually re-creating features based on experimental
parameters. New datasets of a PM6:D18:L8-BO ternary system
and a PM6:PYF-T-o all-polymer system were also created by
running relatively small batches. For training, we used batches
of data rather than individual cells, specifically 294, 467, 1240
and 1990 for the PM6:Y6:IT-4F, 257, 517, 1289 and 2053 for the
PM6:D18:L8-BO ternary system and 258, 784, 1538, and 2323
for the PM6:PYF-T-o all-polymer system. The remaining data-
sets were reserved for testing (for details, see Note S11, SI). The
complete datasets and model performance results are available
in Data S3 and S4, respectively.

Fig. 5 illustrates the performances of RF-based models
trained without and with the accumulated PM6:L8-BO dataset.
Despite the PM6:Y6:IT-4F system having only one common
material, the models trained with the accumulated data con-
sistently outperformed those without it; in particular, there was
an improvement with smaller training datasets. The same trend
was observed in the PM6:D18:L8-BO system, which shares two
common materials with the accumulated dataset, leading to
even more significant improvements. Notably, the model
trained with only 10% of the new dataset performed well in
predicting the remaining 90%. Interestingly, while integrating
the accumulated dataset substantially enhanced predictive
accuracy for ternary systems, the improvement was not consis-
tent for the PM6:PYF-T-o all-polymer system (Fig. S39, SI).
Specifically, in cases where the training dataset sizes were
784 or 1538, the test R2 values showed a slight decrease after
adding the accumulated data. This behavior may arise from
intrinsic differences between all-polymer systems and small-
molecule NFA-based systems. These findings suggest that
polymer acceptors may require a separate model category or
an additional independent feature to better capture their dis-
tinct characteristics.

Nonetheless, these results highlight the value of digitalizing
research parameters and demonstrate how existing knowledge
can be applied to new material systems in OPV research. By
showing that models trained on binary systems can predict

Table 3 Summary of PPs for R2R OPVs with the top formulation in clusters 0 and 1 using CB and Xyl processing solvents. PPs obtained from PCE and the
J–V prediction model are also listed for comparison

Cluster
Number Prediction Solvent

JSC

(mA cm�2)
Cal. JSC

(mA cm�2) VOC (V) FF PCE (%)
Rsh

(O cm2)
Rs

(O cm2)

0 PCE CB 19.7 — 0.834 0.632 11.3 913 2.72
J–V 20 — 0.829 0.679 11.3 1319 2.67
—a 20.3

(19.9 � 0.821)
19.91 0.835

(0.831 � 0.010)
0.694
(0.688 � 0.035)

11.8
(11.3 � 0.550)

874
(2065 � 6883)

2.18
(2.14 � 0.279)

Xyl 20.0
(19.8 � 0.674)

19.77 0.824
(0.820 � 0.004)

0.678
(0.672 � 0.025)

11.2
(10.9 � 0.195)

6993
(1885 � 5139)

1.77
(1.99 � 0.184)

1 PCE CB 20.5 — 0.810 0.625 10.3 534 2.09
J–V 20.7 — 0.810 0.619 10.4 1730 2.01
—a 21.6

(21.3 � 0.573)
20.83 0.814

(0.804 � 0.008)
0.632
(0.564 � 0.056)

11.1
(9.67 � 1.01)

3894
(813 � 700)

2.90
(3.80 � 0.808)

Xyl 20.8
(19.7 � 1.51)

20.63 0.819
(0.816 � 0.010)

0.638
(0.590 � 0.063)

10.9
(9.51 � 1.35)

664
(1210 � 3153)

1.72
(1.96 � 0.447)

a 200 devices were fabricated for each formulation. All statistical data were calculated from 200 devices.
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ternary performance, this work illustrates how accumulated,
compatible datasets enable the development of ML models
with a comprehensive understanding of materials and fabrica-
tion parameters. Such models could significantly accelerate
OPV commercialization.

Conclusion

We developed a new data-driven research approach that will
significantly accelerate the progress of printed OPV towards
commercialization. It includes the generation of reusable and
expandable training data capable of predicting the properties of
new materials and developing PP and J–V prediction ML
models. The data was first generated using the MicroFactory
platform, which facilitated the mass-customization and char-
acterization of over 26 000 OPV cells in just four days through

fully digitalized processes. These data were then used to train
the PP and J–V prediction models that can guide researchers to
rapidly optimize OPV manufacturing parameters. We found
that the J–V prediction models are useful not only for predicting
efficiencies but also for understanding device behavior based
on the composition and fabrication parameters of untested
devices. The RF-J–V prediction models accurately predicted J–V
curves with an exceptional R2 score of 0.969. The PCEs calcu-
lated from these curves were also as precise as those from PCE
prediction models, both showing an R2 score of approximately
0.96. This high model performance is attributed to the large
quantity of systematically collected high-quality data, as well as
finding suitable algorithms followed by thorough hyperpara-
meter optimization. In addition, an OPV device using the RF-
model-predicted formulation recorded 11.8% PCE, the best
efficiency for fully printed OPVs achieved to date. Further data

Fig. 5 Test R2 performance across training dataset sizes without or with the accumulated dataset for two ternary systems. Box plots illustrating test R2

for two material systems: (a) PM6:Y6:IT-4F and (b) PM6:D18:L8-BO, in relation to the average number of pieces of training data, corresponding to about
10, 20, 50 and 80% without and with the accumulated dataset (PM6:L8-BO material system composed of 20 199 data points). Each data point for the R2 is
represented as a circle-shaped marker. Pink and blue boxes represent the interquartile range (IQR) of the test R2 without and with the accumulated data,
respectively, extending from the first quartile (Q1) to the third quartile (Q3). Each median is indicated by a solid line within the box, accompanied by a
numerical value. The boundaries of the whiskers follow the 1.5 IQR rule to identify outliers, where the lower whisker extends to the lowest data point
above Q1 � 1.5 � (Q3 � Q1), and the upper whisker extends to the highest data point below Q3 + 1.5 � (Q3 � Q1). Outliers are denoted by a marker ‘�’.
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accumulation will enable the development of more generalized
ML models that leverage accumulated and compatible datasets
to predict device behavior for new materials and fabrication
conditions. By demonstrating that models trained on binary
systems can effectively predict ternary device performance, this
work highlights how data reuse accelerates optimization and
drives OPV development toward commercialization. This study
paves the way to a digital revolution in printed photovoltaic
research and, potentially, solution-processed electronics.

Experimental section
Material preparation

PM6 (PBDB-T-2F), L8-BO (L8-BO-2F), and BM-HTL-1 were pro-
cured from Brilliant Materials. Qx-1 was synthesized following
the procedures introduced in ref. 34 and was also purchased
from Hyper Chem. D18 (PCE18) was obtained from 1-Material.
S315 (Orgacon S315) was purchased from Agfa-Gevaert N. V.
PEDOT:F was synthesized following the procedures outlined in
ref. 35. A commercial solution of ZnO NPs (5.6% w/v in
isopropanol (IPA)) was sourced from Infinity PV. PEIE (polyethy-
lenimine, 80% ethoxylated solution, 37 wt% in H2O), CB (chlor-
obenzene, anhydrous, 99.8%), ortho-xylene (o-xylene, anhydrous,
97.0%), 2-methoxyethanol (anhydrous, 99.0%), and IPA (anhy-
drous, 99.0%) were acquired from Sigma-Aldrich. The TCE
(OPV8, 8 O sq�1) was obtained pre-patterned on PET from
Mekoprint A/S with a proprietary deposited metal composition.
Ag paste (PV416) was purchased from DuPont. A 3MTM ultra
barrier solar film 512 was purchased from 3M.

R2R device fabrication and optimization

R2R devices were fabricated on pre-patterned TCE-coated PET
substrates. A customized R2R coater equipped with program-
mable syringe pumps facilitated the experiment. A solution of
ZnO NPs was prepared by diluting it with IPA in a 1 : 1 ratio
(v/v), resulting in a 2.8% solution (w/v). A solution of PEIE
(0.4 wt% dissolved in 2-methoxyethanol) and the ZnO NP
solution were concurrently deposited using two distinct slot-
die heads (head 1: PEIE; head 2: ZnO NP). The substrate passed
through head 1 followed by head 2, enabling deposition of the
ZnO NPs layer over the PEIE layer. Both solutions were coated at
a speed of 20 cm min�1 with varying solution feed rates (PEIE:
15 mL min�1 and ZnO NP: 20 mL min�1), resulting in wet film
thicknesses (WFT) of 5.76 mm for PEIE and 7.69 mm for ZnO NP
based on a coating area of 26 cm2 min�1 (1.3 cm width � 20 cm
length). The layers were then thermally annealed at different
temperatures (PEIE: 130 1C and ZnO NP: 120 1C) on curved hot
plates located beneath each slot-die head for B45 s immedi-
ately after deposition. Subsequent layers were fabricated at the
same coating speed (30 cm min�1). Two different active solu-
tions, PM6 : Qx-1 and PM6 : L8-BO (D : A = 1 : 1.5, w/w), were
dissolved in Xyl (25 mg mL�1 total concentration) and stirred at
80 1C overnight. During deposition, the solution feed rates were
fixed at 60 mL min�1 (WFT: 1.54 mm based on a coating area of
39 cm2 min�1, 1.3 cm width � 30 cm length). Optimization of

the active layer involved two technologies. First, films were
fabricated using a hot deposition technique36,37 at various
deposition temperatures (head/bed: RT/RT, 60/60, 60/100,
90/60, and 90/100 1C). Heat was applied directly to the slot-
die head using a custom-built heater probe into a metal slot
die, while a second heat source in a coating stage was applied to
the substrate during slot-die solution deposition. Films were
then thermally annealed at 130 1C on the curved hot plate for
B30 s. Next, drying kinetics were controlled by either thermally
annealing the film at 130 1C on a coating stage, blowing air
onto the wet film during deposition, or allowing the film to dry
naturally without treatment for comparison. To fabricate a thin-
film HTL, a PEDOT : F solution was diluted with IPA in a 1 : 1
ratio (v/v). The PEDOT:F and S315 solutions were deposited
from heads 1 and 2, respectively, to create the PEDOT:F layer
underneath the S315 layer. Solution feed rates were 30 and
168 mL min�1 for the PEDOT:F and S315, respectively, corres-
ponding to WFTs of 10 mm and 8 mm based on coating areas of
30 cm2 min�1 (1 cm width � 30 cm length) and 21 cm2 min�1

(0.7 cm width � 30 cm length) at the same coating speed. The
layers were then thermally annealed at different temperatures
(PEDOT:F: 100 1C and S315: 130 1C) on curved hot plates for
B30 s. All R2R device fabrication was conducted under ambi-
ent laboratory conditions, where the relative humidity and
temperature were maintained at 35.8 � 3.68% and 22.4 �
0.58 1C (mean � standard deviation), respectively.

High-throughput fabrication of R2R device

For high-throughput device fabrication, we selected the
PM6:L8-BO system as an example. All active layers were for-
mulated using CB solvents due to the limited solubility of
L8-BO in the acceptor-rich solution when using Xyl solvents.
A pre-mixed PM6 : L8-BO solution (1 : 1.2, w/w, PM6 concen-
tration: 10 mg mL�1) was prepared first, along with an identical
solution containing various additives: DIO, CN, 2-HM and DCB.
The additive concentrations were set to 2 and 3 vol% for DIO
and CN, respectively, while 2-HM and DCB were added at
150 wt% relative to the donor solids and total donor and
acceptor solids, respectively. Relative pump flow rates were
adjusted to control the solid content of additives and to
determine the optimal additive conditions. Based on these
evaluations, the best-performing solution (without additives)
was selected for large-scale fabrication. Using this optimized
formulation, a total of 26 422 OPV devices were produced across
two independent batches, each yielding more than 13 000
devices. The device fabrication process mirrored those intro-
duced in the ‘R2R device fabrication and optimization’ section,
with variations in the deposition of the active layer and HTL.
These variations are detailed below for each batch.

Batch 1: active layer solutions of PM6:L8-BO were prepared
in CB at 80 1C overnight, with two distinct D : A ratios of 3 : 1
and 1 : 3 (denoted as donor- and acceptor-rich solutions),
maintaining a fixed donor concentration of 10 mg mL�1. These
solutions were deposited using two programmable syringe
pumps, combined via a Y-connector, and the in situ mixed
solution was fed through tubing with an inner diameter of

Energy & Environmental Science Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

5 
 2

02
5.

 D
ow

nl
oa

de
d 

on
 3

1.
01

.2
6 

15
:1

1:
35

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ee02815a


This journal is © The Royal Society of Chemistry 2025 Energy Environ. Sci., 2025, 18, 9524–9537 |  9535

0.5 mm. 13 sub-batches were conducted throughout the batch.
Total solution flows remained constant at 72, 48, 36, or
24 mL min�1 (resulting in WFT of 1.85, 1.23. 0.923, or
0.616 mm) while adjusting the relative flow rates of the two
pumps for the first 4 sub-batches. This manipulation varied the
D : A ratios of the total solution flow, leading to linear increases
in TDD during deposition. In contrast, the volumetric ratios of
the donor- and acceptor-rich solutions were held constant to
achieve fixed D : A ratios of 1 : 3, 1 : 2, 1 : 1.5, 1 : 1.2, 1 : 1, 1.2 : 1,
1.5 : 1, 2 : 1, or 3 : 1 in the total solution flow. The total solution
flows varied within the range 24–96 mL min�1 (resulting in WFT
of 0.616–2.46 mm), leading to linear decreases in TDD during
deposition for the remaining 9 sub-batches.

Batch 2: active layer solutions of PM6:L8-BO were prepared
at 80 1C overnight consisted of a donor-rich solution (D : A ratio
of 3 : 1 and a donor concentration of 15 mg mL�1) and an
acceptor-rich solution (D : A ratio of 1 : 3 and a donor concen-
tration of 5 mg mL�1). The deposition process mirrored that for
batch 1. Total solution flows were maintained at a constant rate
of 120, 90, 60, or 30 mL min�1 (resulting in WFT of 3.08, 2.31,
1.54, or 0.769 mm) while the relative flow rates of the two pumps
were altered for the first 4 sub-batches. The D : A ratios of the
total solution flow were varied while TDD remained constant,
corresponding to 63.5, 47.7, 31.8, and 15.9 mg cm�2, respec-
tively. The volumetric ratios of the donor- and acceptor-rich
solution were held constant to achieve fixed D : A ratios of 1 : 3,
1 : 2, 1 : 1.5, 1 : 1.2, 1 : 1, 1.2 : 1, 1.5 : 1, 2 : 1, or 3 : 1 in the total
solution flow. The total solution flows varied within the range
24–120 mL min�1 (resulting in WFT of 0.616–3.08 mm), leading
to linear decreases in TDD during deposition for the remaining
9 sub-batches.

All active layers were fabricated at RT for both head and bed
temperatures, and the films were exposed to an air-blowing
process during deposition. The dead volumes of the tubing
from the Y-connector and the slot die were calculated to be
B33.7 and B39.6 mL for batch 1 and batch 2, respectively. This
implies that the in situ mixed solution was deposited around 28
and 20 s after mixing at flow rates of 72 and 120 mL min�1. The
composition of the film at each position was calculated based
on the relative flow rate and the deposition offset originating
from the dead volume of the deposition system. BM-HTL-1,
diluted with IPA in a 1 : 1 ratio (v/v), was used as the HTL
material, and concurrently deposited with the S315 layer in the
same manner as depicted in the previous section.

Device characterization

All devices had a defined cell area of 2.5 mm2, determined by
the TCE pattern and a commercially available circular aperture
(Thorlab, 1.8 mm diameter). J–V characteristics of all OPV
devices were characterized using an AAA solar simulator (Enli-
tech, SS-F5-3A), which employed a xenon lamp light source
(USHIO, UXL-300D-0) coupled with an AM 1.5G solar spectrum
filter. This setup was integrated with an R2R tester connected to
a source measurement unit (a Keithley 2400-LV) under stan-
dard test conditions (1 sun, 100 mW cm2, AM 1.5G) and
ambient surroundings. The light intensity was calibrated and

monitored using an Enlitech certified secondary reference cell
(Si-FigRC-5021), which had been pre-calibrated by a certified
KG-2 filtered Si reference cell. Ag paste was screen printed on
top of the S315 layer using an SP-006 screen printer (ESSEMTEC
AG) to establish electrical contact with a test clip during EQE
measurement. Subsequently, the devices were encapsulated
with a barrier film. EQE spectra were acquired in air using a
PEC-S20 instrument (Peccel Technologies Inc.).

Film characterization

To analyze the properties of the thin films, several techniques
were employed. Work function measurements were performed
using photoelectron spectroscopy (PESA) in air. UV-vis absorp-
tion spectra of thin films were obtained using an SPM-C1
spectrometer (StellarNet Inc.) with a xenon lamp serving as
the light source. AFM height and phase images (5 mm � 5 mm)
were captured using a Bruker Dimension Icon (Bruker Corpora-
tion, USA). Scans were recorded using tapping mode and
Bruker ScanAsyst-Air probes (cantilever frequency 70 kHz,
spring constant 0.4 N m�1, nominal tip radius 2 nm) under
ambient conditions. A scan rate of 0.25 Hz was maintained for
all scans. Nanoscope Analysis 1.9 (Bruker Corporation, USA)
was used for image processing and production. All samples
were R2R slot-die coated onto PET substrates.

ML-predicted formulation-based device fabrication

The fabrication process for all devices followed the steps out-
lined in the ‘R2R device fabrication and optimization’ section,
excluding deposition of the active layer. PM6:L8-BO active layer
solutions in CB and Xyl were prepared overnight at 80 1C, based
on the ML-predicted formulations generated by the best PCE
and J–V prediction models. These formulations were divided
into two groups with different donor concentrations: cluster
0 (10.2 mg mL�1, D : A = 1 : 1.14, w/w) and cluster 1
(9.29 mg mL�1, D : A = 1 : 1.22, w/w). The active layers were
deposited using a single syringe pump at solution flow rates of
72.5 and 117.5 mL min�1, corresponding to WFT of 1.86 and
3.01 mm based on 39 cm2 min�1 coating area. This resulted in
TDD of 40.5 and 62 mg cm�2 for cluster 0 and cluster 1,
respectively. All films were fabricated at RT for both head and
bed deposition temperatures and dried under airflow condi-
tions, consistent with the process used for the production of
the high-throughput devices.

Similarity measurement metrics

The Euclidean distance (ED) metric was utilized for quantifying
similarities between two data points in a multidimensional
space using the following formula:

Euclidean distance ðEDÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM
k¼1

Fk;x � Fk;y

Fk;max

� �2

vuut (S1)

M represents the total number of features. Fk,x and Fk,y denote
the kth features of two selected devices, such as the TDDs of
device 1 and device 2. Fk,max denotes the maximum value of the
kth features.
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Ternary or all-polymer system-based device fabrication and
data preparation

PM6:Y6:IT-4F system: the data from previously fabricated and
characterized devices were utilized, as detailed in a previous
publication.23 The final dataset included 16 different batches,
totaling 2422 data points, with 10 features and 1 label for
PCE prediction. Notably, the introduction of Y6, IT-4F and
o-dichlorobenzene (DCB) is represented in the dataset as
columns as ‘DCB FR’, ‘Y6 DD’ and ‘IT-4F DD’.

PM6:D18:L8-BO system: the device fabrication followed the
procedures outlined in the previous section, with the exception
of active layer deposition. The experiment consisted of two
independent batches, each with 5 sub-batches. In batch 1,
donor-only solution (PM6 : D18 = 4 : 1, total concentration:
20 mg mL�1) and acceptor-only solution (L8-BO concentration:
20 mg mL�1) were prepared. In batch 2, pre-mixed solutions of
PM6 : D18 : L8-BO (0.5 : 0.5 : 1.2, PM6 or D18 concentration:
5 mg mL�1) and PM6 : L8-BO (1 : 1.2, PM6 concentration:
10 mg mL�1) were dissolved in CB at 80 1C overnight. During
deposition, total solution flows were maintained at constant
rates of 120, 96, 72, 48, or 24 mL min�1 (resulting in WFT of
3.08, 2.46, 1.85, 1.23 or 0.615 mm), with alterations in the
relative flow rates of the two pumps. The D : A ratios (batch 1)
or PM6 : D18 ratios (batch 2) of the total solution flow were
varied, while the TDD were either changed (batch 1) or kept
constant (batch 2), resulting in TDD of 68.7, 54.9, 41.2, 27.5, or
13.7 mg cm�2, respectively. The deposition occurred under
identical environments, and the compositions of the film at
each position were calculated using the same methods as in the
previous experiments. Dataset preparation involved consistent
feature design and data-cleaning procedures as in the previous
section. The final dataset comprises 2570 data points, with
10 features and 1 label for PCE prediction, incorporating D18 as
the third material, represented by the column ‘D18 DD’ in the
dataset. Any inconsistent data were removed prior to analysis.

PM6:PYF-T-o system: device fabrication followed the proce-
dures described previously, except for the active layer deposi-
tion. Three independent batches were prepared, each
consisting of 5 or 6 sub-batches and 1 sub-batch. In batch 1,
donor-only (PM6 concentration, 14 mg mL�1) and acceptor-
only (PYF-T-o concentration, 14 mg mL�1) solutions were pre-
pared. In batch 2, pre-mixed solutions of PM6 : PYF-T-o at ratios
of 2.5 : 1 and 1 : 2.5 (PM6 concentration: 7 mg mL�1) were
prepared. In batch 3, a pre-mixed PM6:PYF-T-o solution
(1 : 1.2, w/w) (PM6 concentration: 7 mg mL�1) was prepared
along with an identical solution containing PN as a solid
additive (100 wt% relative to the total donor and acceptor
solids). All solutions were dissolved in CB and stirred overnight
at 70 1C. During deposition, the total solution flow rates were
set to 120, 96, 72, 48, or 24 mL min�1 in batches 1 and 2,
resulting in WFTs of 3.08, 2.46, 1.85, 1.23, and 0.615 mm,
respectively, while batch 3 was fixed at 72 mL min�1. Relative
pump flow rates were varied to control D : A ratios, film thick-
ness, or the solid content of 2-PN. The TDD was kept constant
in batch 1 (43.1, 34.5, 25.8, 17.2, and 8.62 mg cm�2) but varied in
batches 2 and 3. Deposition conditions were consistent with

earlier experiments, and the film composition at each position
was determined using the same calculation methods. Dataset
preparation followed the same feature design and data-
cleaning protocols described previously. The final dataset com-
prised 2840 data points, including 10 features and 1 target label
for PCE prediction. Two additional feature columns, ‘PYF-T-o
DD’ and ‘PN DD’, were introduced to represent PYF-T-o as the
acceptor material and 2-PN as the additive, respectively. Any
inconsistent data were removed before analysis.
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