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Evaluating sample normalization methods for
MS-based multi-omics and the application to
a neurodegenerative mouse model†
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Mass spectrometry (MS)-based omics methods have transformed biomedical research with accurate and

high-throughput analysis of diverse molecules in biological systems. Recent technological advances also

enabled multi-omics to be achieved from the same sample or on a single analytical platform. Sample nor-

malization is a critical step in MS-omics studies but is usually conducted independently for each omics

experiment. To bridge this technical gap, we evaluated different sample normalization methods suitable

for analyzing proteins, lipids, and metabolites from the same sample for multi-omics analysis. We found

that normalizing samples based on tissue weight or protein concentration before or after extraction gen-

erated distinct quantitative results. Normalizing samples first by tissue weight before extraction and then

by protein concentration after extraction resulted in the lowest sample variation to reveal true biological

differences. We then applied this two-step normalization method to investigate multi-omics profiles of

mouse brains lacking the GRN gene. Loss-of-function mutations in the GRN gene lead to the deficiency

of the progranulin protein and eventually cause neurodegeneration. Comparing the proteomics, lipido-

mics, and metabolomics profiles of GRN KO and WT mouse brains revealed molecular changes and path-

ways related to lysosomal dysfunction and neuroinflammation. In summary, we demonstrated the impor-

tance of selecting an appropriate normalization method during multi-omics sample preparation. Our nor-

malization method is applicable to all tissue-based multi-omics studies, ensuring reliable and accurate

biomolecule quantification for biological comparisons.

1. Introduction

Mass spectrometry (MS) has become a dominant technology
for proteomics, lipidomics, and metabolomics research to
understand physiological and disease processes.1,2 With recent
advances in analytical methods and computational tools,
different omics can be integrated together to capture the

complex molecular landscape in biological systems.3 Multi-
omics integration can be achieved at different levels. Sample
preparation methods have been developed to extract different
types of molecules from the same biological sample.4–6

Analyzing different biomolecules on the same liquid chrom-
atography-mass spectrometry (LC-MS) platform has also
become possible.7,8 Various bioinformatics tools have emerged
to integrate different omics datasets to associate with the same
gene or pathway, revealing how different types of molecules
work together to govern human health.9

Omics studies typically involve the analysis of multiple
replicates across different biological groups. Normalization is
a crucial step in omics studies to control systematic biases and
minimize variability.10 Normalization can be conducted
during sample preparation (pre-acquisition normalization) or
during data analysis (post-acquisition normalization). Pre-
acquisition normalization aims to standardize each sample to
the same total quantity of molecules to minimize sample
variability.11,12 Post-acquisition normalization adjusts the data
to reduce instrument and data variations.13–16 Whenever poss-
ible, pre-acquisition normalization is preferred over post-acqui-
sition normalization so that the same amount of starting
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material from each sample can be injected onto the instru-
mental platform for a fair comparison. However, pre-acqui-
sition normalization methods suitable for multi-omics ana-
lysis have rarely been investigated.

Different omics experiments are traditionally analyzed with
different analytical methods in different laboratories.
Therefore, sample normalization is typically conducted inde-
pendently for each omics experiment. Proteomics analysis
employs a uniform sample normalization method that adjusts
each sample to the same total protein amount based on a col-
orimetric assay measuring total protein concentration. For lipi-
domics and metabolomics, there is no accurate method to
measure the total lipid or metabolite amount from complex
biological samples. Thus, normalization methods for lipido-
mics and metabolomics vary based on sample types and study
designs. For example, tissue weight, plasma volume, urine
osmolality, cell count, and protein amount have been used for
sample normalization for various lipidomics and metabolo-
mics applications.11,12,17–19 Normalization methods for multi-
omics need to adjust sample amounts to ensure that they are
suitable for the extraction and analyses of different types of
molecules from the same sample.

To address this critical gap, we evaluated different sample
normalization methods for tissue-based multi-omics analysis.
Normalization methods based on tissue weight and protein
concentration before and after extraction were compared using
mouse brain samples. The goal is to control systematic bias,
reduce sample variability, minimize sample preparation steps,
and maximize the separation of different biological groups.
We then applied the optimal normalization method to explore
the multi-omics profile of a neurodegenerative mouse model
lacking the GRN gene. Mutations in the GRN gene lead to the
deficiency of progranulin protein inside lysosomes and even-
tually cause frontotemporal dementia.20–22 Recent studies have
associated progranulin deficiency with lysosomal dysfunction,
innate immunity, and lipid metabolism.5,23–25 Comparing the
proteome, lipidome, and metabolome profiles between GRN
KO and WT mouse brains can provide us a comprehensive
picture to understand progranulin deficiency and neurodegen-
erative diseases.

2. Experimental
2.1. Mouse brain tissue sample preparation

Mice (C57/BL6 WT and GRN KO) were obtained from the
Jackson Laboratory and housed in the Weill Hall animal facil-
ity at Cornell University. All animal experiments and pro-
cedures were performed according to NIH guidelines and were
approved by the Institutional Animal Care and Use Committee
(IACUC) at Cornell. Two-month-old mice were euthanized with
5% isoflurane and perfused with cold phosphate buffered
saline (PBS). Mouse brain hemisphere tissues were dissected
and snap-frozen in liquid nitrogen and stored at −80 °C.
Frozen mouse brain tissues were lyophilized briefly (2 min
under 10 torr in a Labconco Lyophilizer) to remove residual

PBS and cut into small pieces using a micro-scissor in 2 ml
tubes kept on ice. For the comparison of different normaliza-
tion methods with four biological replicates, WT mouse brain
tissues were weighed and homogenized at a ratio of 800 µL of
HPLC-grade water per 25 mg of tissue using a tissue grinder
(Kimble) in 2 mL tubes. Tissue samples were sonicated on ice
for 10 minutes using a Qsonica bath sonicator with a 1 min-on
and 30 s-off cycle and then vortexed briefly. For the biological
comparison of GRN KO vs. WT, mouse brain tissues were
weighed, and a methanol–water mixture (5 : 2, v : v) was added
to the tissue at a concentration of 0.06 mg of tissue per micro-
liter of solvent mixture. Four mice were used for each group.

2.2. Multi-omics extraction

Multi-omics extraction for proteins, lipids, and metabolites
was conducted using the Folch method.26 Briefly, methanol,
water, and chloroform were added to the tissue sample at a
volume ratio of 5 : 2 : 10 (v : v : v). The tissue sample in extrac-
tion solvents was incubated on ice for 1 hour with frequent
vortexing. Samples were centrifuged at 12 700 rpm and 4 °C
for 15 min. The organic solvent layer was transferred into a
new tube, dried, and reconstituted in a MeOH : CHCl3 : H2O
mixture (18 : 1 : 1, v : v : v) for lipidomics analysis. The aqueous
layer was transferred into a new tube, dried, and reconstituted
in MS-grade water with 0.1% formic acid (FA) for metabolo-
mics analysis. Internal standards (I.S.) were spiked into each
tube before drying the aqueous and organic solvent layers:
13C5

15N folic acid (Sigma) was used for metabolomics and
EquiSplash® (Avanti Polar Lipids) was used for lipidomics
(Table S1†). The protein pellet was dried and reconstituted in
lysis buffer (8 M urea, 50 mM ammonium bicarbonate, and
150 mM sodium chloride). Each protein sample was sonicated
with a Qsonica on ice for 30 minutes and clarified by centrifu-
gation. The protein concentration was measured using a DCA
assay (Bio-Rad). Bottom-up proteomics procedures were con-
ducted as described previously for reduction, alkylation, over-
night digestion, and cleanup.5

To evaluate different multi-omics normalization methods,
method A measures the protein concentration from the tissue-
water slurry and normalize tissue samples by the protein con-
centration before multi-omics extraction. For method B, tissue
samples were normalized based on tissue weight before multi-
omics extraction. For method C, tissue samples were normal-
ized based on tissue weight before multi-omics extraction.
After extraction, the protein concentration from the extracted
protein pellet was measured. The volumes of lipid and metab-
olite fractions were normalized based on protein concentration
before drying.

2.3. LC-MS/MS analysis

All samples were transferred into glass LC vials with fixed
inserts for LC-MS/MS analyses. Peptide samples were analyzed
using a Dionex UltiMate 3000 RSLCnano system coupled with
a Thermo Scientific Q-Exactive HF-X Orbitrap mass spectro-
meter. MS-grade water with 0.1% FA and acetonitrile (ACN)
with 0.1% FA were used for mobile phases A and B, respect-

Paper Analyst

1272 | Analyst, 2025, 150, 1271–1279 This journal is © The Royal Society of Chemistry 2025

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

4 
 2

02
5.

 D
ow

nl
oa

de
d 

on
 0

7.
01

.2
6 

23
:0

4:
18

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4an01573h


ively. An EASY-Spray PepMap RSLC C18 column (2 µm, 100 Å,
75 µm × 50 cm) was used for peptide separation with a
210 min gradient at 55 °C and a flow rate of 0.25 µL min−1.
Data independent acquisition was conducted, and the MS
scan range was set as m/z 400 to 1000 in positive ion mode.
The MS1 resolving power was 60 K (at m/z 200 FWHM), the
automatic gain control (AGC) target value was 1 × 106, and the
maximum injection time (maxIT) was 60 ms. The precursor
isolation window was m/z 8.0 (overlapped) with 75 sequential
data independent acquisition (DIA) MS/MS scans at an MS/MS
resolving power of 15 K, an AGC target of 2 × 105, a maxIT of
50 ms, and a normalized collision energy (NCE) of 30%.

Lipid samples were analyzed using a Vanquish Duo UHPLC
system coupled with a Thermo Scientific Q-Exactive HF-X MS.
An ACQUITY UPLC® BEH Shield RP18 column (1.7 µm,
2.1 mm × 150 mm) was used with a 40 min total gradient, a
flow rate of 0.15 mL min−1, and a column temperature of
40 °C. Mobile phase A (H2O : ACN, 9 : 1, v : v) and mobile phase
B (IPA : MeOH : ACN : H2O, 7 : 1.5 : 1 : 0.5, v : v : v : v) were used
for lipid separation. As the ionization modifier, 0.5 mM
NH4HCO2 and 5 mM NH4OH were used in both mobile
phases. Full MS scans with positive and negative ion modes
were used for each sample. Data dependent acquisition (DDA)
in both positive and negative ion modes was used for lipid
identification using a pooled sample from different biological
replicates and groups. The m/z range of the MS1 scan was
from 380 to 1200 (ESI+) and 380 to 2000 (ESI−). The isolation
m/z window was set as 2. The resolving power was 60 K, the
AGC target was 1 × 106, and the NCE was 22.5% (ESI+) or
27.5% (ESI−) for DDA with dynamic exclusion times of 10 s
and 20 s.

Metabolite samples were analyzed using the same
UHPLC-ESI-MS/MS system as the lipid sample analysis. A Luna
Omega Polar C18 column (1.6 µm, 100 Å, 2.1 mm × 100 mm)
was used for metabolite separation with a 20 min total gradi-
ent, a flow rate of 0.3 mL min−1, and a column temperature of
30 °C. Mobile phases were the same as those used for proteo-
mic analysis. Full MS scans for positive and negative ion
modes were used for each sample, and DDA was used for
metabolite identification using pooled samples. The m/z range
of the MS1 scan was 70 to 800 with a resolving power of 60 K
and an AGC target of 1 × 106. The isolation m/z window was set
as 2. DDA used an NCE of 30% and a dynamic exclusion time
of 10 s.

2.4. Multi-omics data analysis

Proteomics raw data were analyzed using Spectronaut software
(v19, Biognosys) with the DirectDIA mode and default settings.
The Swiss-Prot Mus musculus (Mouse) reviewed database and
our custom contaminant libraries (https://github.com/
HaoGroup-ProtContLib) were included for protein identifi-
cation.27 For protein identification, up to 2 missed cleavages
and 3 variable modifications were allowed. Carbamidomethyl
C was set as the fixed modification, and methionine oxidation
and protein N-terminal acetylation were set as variable modifi-
cations. False discovery rate (FDR) cutoffs for precursors and

proteins were set as 1%. DIA precursors with intensities below
1.0 × 103 arbitrary units (a.u.) were removed. Normalization to
total spectral abundance was selected for the GRN KO vs. WT
dataset.

Lipidomics data were analyzed using LipidMatch software
(v4.0).28 For lipid identification, a 5 ppm mass tolerance for
precursor ions and 10 ppm for product ions were used. Each
lipid peak area was normalized by both the lipid I.S. and the
total protein amount after extraction. The semi-absolute
quantification (pmol lipid per µg of protein) was used for the
calculation of lipid concentration.29–31 For lipid annotation, an
underbar “_” is used to separate the acyl chain composition
for glycerophospholipid (GP) and glycerolipid (GL) without
indicating the exact acyl chain location. For the sphingolipid
(SP), a “/” separates the sphingosine backbone and acyl chain
composition with the exact acyl chain location. The abundance
can be calculated using individual lipid concentration per
total lipid concentration within each lipid class.

Metabolomics data were analyzed using Compound
Discoverer software (v3.3, Thermo) based on MS1 and MS/MS
database searches with the built-in MzCloud, ChemSpider,
HMDB, and KEGG libraries and our in-house metabolite stan-
dard spectral library.6,32 A max retention time shift of 0.5 min,
a mass tolerance of 10 ppm, and a minimum peak intensity of
1.0 × 105 a.u. were used. Quantification of metabolites in our
in-house library was further confirmed using Skyline software
for targeted peak extraction and integration.33 Metabolite con-
centrations were normalized by both the I.S. and the total
protein amount.

Statistical analysis was conducted using the Student’s t-test
for each proteomics, lipidomics, and metabolomics dataset.
Several website-based software packages were used for
additional data analysis: VolcaNoseR34 (volcano plots),
ShinyGO35 (protein GO-enrichment analysis), and
Metaboanalyst36 (principal component analysis (PCA) and
joint pathway analysis).

3. Results and discussion
3.1 Evaluation of sample normalization methods for multi-
omics analysis

Three different sample normalization methods were evaluated
here for multi-omics analysis. The overall workflow is shown
in Fig. 1. Tissues were briefly freeze-dried to remove residue
buffer from dissection and then weighed. Protein, lipid, and
metabolite fractions were obtained from the same mouse
brain tissue sample by methanol–water–chloroform extraction,
followed by LC-MS and data analysis. Example base peak chro-
matograms for proteomics, lipidomics, and metabolomics are
shown in Fig. S1.† Method A measured the protein concen-
tration from the tissue–water slurry and then normalized
tissue samples by protein concentration before extraction.
Method B normalized samples by tissue weight before extrac-
tion. Method C first normalized samples by tissue weight
before extraction and then by protein concentration after
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extraction. All samples are normalized by the protein amount
from the corresponding protein fraction during the data ana-
lysis step.

First, three different sample normalization methods were
evaluated by principal component analysis (PCA) using proteo-
mics, lipidomics, and metabolomics datasets (Fig. 2A).

Fig. 1 Overall workflow to evaluate normalization methods for multi-omics.

Fig. 2 Evaluation of different normalization methods for multi-omics analysis. (A) Principal component analysis using proteomics, lipidomics, and
metabolomics datasets with four replicates per group. (B) Proteomics volcano plots for comparing different normalization methods. Volcano plots
for lipidomics and metabolomics are provided in Fig. S2 and S3.† Dashed lines denote p-value of 0.05 and fold change of 1.5. (C) Violin plots
showing the distribution of coefficients of variation (CV) in lipidomics and metabolomics datasets.
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Method A displayed a distinct proteome profile compared to
methods B and C. Consistent with the PCA plot, over 100 pro-
teins were significantly changed in method A compared to the
other two methods (p-value <0.05 and fold change >1.5), while
only 22 proteins were significantly different between B and C
(Fig. 2B). This is likely because method A normalizes samples
based on the protein concentration from the tissue–water
slurry before extraction, which is not an accurate measurement
of protein amount. For lipidomics, biological replicates in
method A did not cluster as tightly as in methods B and C
(Fig. 2A), and many lipids showed over 80% coefficient of vari-
ation (CV) among biological replicates (Fig. 2C). For metabolo-
mics, method C showed the lowest sample variation among
replicates (Fig. 2C). A volcano plot comparison of the three
methods for lipidomics and metabolomics also demonstrated
that the quantitative omics profile can be largely influenced by
the sample normalization method (Fig. S2 and S3†).

Since method A did not perform well for multi-omics ana-
lysis, we then evaluated methods B and C using biological
comparison groups with and without the GRN gene in mouse
brains. Method C achieved complete separation of GRN KO vs.
WT groups for both lipidomics and metabolomics data
(Fig. 3A and C). Method C also quantified more lipids and
metabolites compared to method B (Fig. 3B and D). Therefore,
method C was selected as the optimal method to normalize
multi-omics sample preparation. This is likely because normal-
izing samples first by tissue weight before extraction can
reduce variability in the amount of starting material. Protein
concentration can be more accurately measured after extrac-
tion in the protein lysis buffer compared to the measurement
before extraction and there is no accurate way to measure the

total amount of lipids and metabolites. Therefore, further nor-
malizing samples based on the total protein amount after
extraction can scale lipids, metabolites, and proteins to
achieve the same LC-MS injection amount per sample, avoid-
ing systematic error and controlling instrumental variation.

3.2 Multi-omics evaluation of progranulin deficiency in
mouse brain

After selecting the optimal sample normalization method C,
we compared the proteome, lipidome, and metabolome pro-
files of 2-month-old mouse brain tissues with and without the
GRN gene. The GRN gene encodes the progranulin protein,
whose deficiency has been associated with various neurode-
generative diseases.20–22 Mice lacking the GRN gene can
already exhibit neurodegenerative phenotypes by a few months of
age. The subtle molecular changes in 2-month-old GRN KO and
WT mice can be used to test the robustness of our normalization
method. As shown in Fig. 4A, a PCA plot demonstrates a clear
separation between 2-month-old GRN KO and WT groups. Many
lysosomal proteins (Ctsh, Lamtor4, Ank3, Scarb2, Tmem192,
Fuca1, Lgmn, Ppt1, Naaa, Asah1, Smpd1, and Tmem106b) were
significantly changed as shown in the volcano plot (Fig. 4B). GO-
enrichment analysis of significantly increased proteins revealed
biological processes related to the complement component C1
complex and lysosomes. Significantly down-regulated proteins
were enriched for myelin sheath, synaptic activity and neuron pro-
jection. This is consistent with our and others’ previous findings
of lysosomal dysfunction caused by the lack of the GRN
gene.22,24,37 We then compared these protein changes with our
previous result of lysosomal proximity labeling in the mouse
brain.24 Two-month-old young mice in this study exhibited con-

Fig. 3 Lipidomics and metabolomics analyses of GRN KO vs. WT groups using different normalization methods. (A) Principal component analysis of
GRN KO vs. WT lipidomics data with four biological replicates from each group. (B) Venn diagram showing the comparison of identified and quan-
tified lipids using normalization Method B and Method C. (C) Principal component analysis of GRN KO vs. WT metabolomics data. (D) Venn diagram
showing the comparison of identified and quantified metabolites using normalization Method B and Method C.
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sistent protein changes but with smaller fold changes compared
to the 20-month-old mice used in our previous proteomics study
(Fig. 4D).24 Lysosomal proteins such as TMEM106B, TPP1, and
CTSH were consistently upregulated in both studies. Another sig-
nificantly altered pathway is related to innate immunity and neu-

roinflammation with proteins like C1qa, Gfap, and Srr.38,39

Additionally, Pip4k2c plays a role in regulating the immune
system, and the depletion of Pip4k2c is relevant to inflam-
mation.40 Prkar2a regulates inflammation via its catalytic subunit
and reduced Prkar2a can cause neuronal apoptosis.41

Fig. 4 Proteomics analysis of mouse brains from GRN KO and WT groups. (A) Principal component analysis of GRN KO vs. WT proteomics data. (B)
Volcano plot of GRN KO vs. WT proteomics data. Proteins that were reproducibly quantified in only one group are labeled at the upper left and right
corners of the graph. (C) GO-Enrichment analysis showing enriched biological processes using significantly changed proteins from the GRN KO vs.
WT comparison. Enrichment score was calculated as log2(fold enrichment) × −log10(enrichment FDR). (D) Significantly changed proteins overlapped
between this study and our previous mouse brain lysosomal proximity labeling (LysoBAR) proteomics data.24 *p < 0.05; **p < 0.01; and ***p < 0.001.

Fig. 5 Lipidomics and metabolomics analyses of mouse brains from GRN KO and WT groups. (A) Volcano plot of GRN KO vs. WT lipidomics data.
(B) Sphingolipid concentrations (pmol µg−1 of protein) in GRN KO vs. WT mouse brains. (C) Other key lipid changes in GRN KO vs. WT mouse brains.
(D) Volcano plot of GRN KO vs. WT metabolomics data.
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Alterations in lipid metabolism have recently been associ-
ated with progranulin deficiency in frontotemporal
dementia.25,42 Lipidomics analysis of mouse brain tissues
revealed 39 significantly changed lipid species in 2-month-old
GRN KO vs. WT groups (Fig. 5A). As shown in Fig. 5B, many
sphingolipids were significantly changed, consistent with
recent reports in progranulin-deficient mouse brains.25

Sphingolipid is highly abundant in the central nervous system
and is crucial for brain development.43 Other key lipid
changes are shown in Fig. 5C and Fig. S4.† Ceramide (Cer) is
known to regulate inflammation and binds to cathepsin.43,44

Ganglioside (GM1) gangliosidosis is a rare inherited neurode-
generative disease with deficient lysosomal enzyme
β-galactosidase.45 Increased hexosylceramide (HexCer) induces
the expression of sphingosine kinase, causing neuroinflamma-
tion.46 Sulfatide (SHexCer) is a lipid component of the myelin
sheath that plays a key role in myelination, the process of
wrapping a myelin sheath around axonal bundles.47

Interestingly, eight dimethyl-phosphatidylethanolamine
(DMPE) species were significantly decreased in the GRN KO
group (Fig. 5C and S4†). Anti-inflammatory treatment has
been found to lead to an increase in DMPE.48 Ether lipids (PE
(P-18 : 1/18 : 1), PS(P-18 : 0/22 : 6), and PS(P-20 : 0/20 : 1)) were
significantly decreased in the GRN KO group (Fig. 5C and S4†).
They are known for their antioxidant properties in the central
nervous system, especially plasmalogen lipids.49

In the metabolomics dataset, there were not many signifi-
cant changes in the GRN KO vs. WT comparison (Fig. 5D). This
is likely due to the young age of mice (2-month-old). Among a
handful of changed metabolites, two acyl-carnitines were sig-
nificantly increased, which are known to be associated with
mitochondrial metabolism and neuroinflammation.50 In par-
ticular, acetyl carnitine is known for its neuroprotective func-
tion.51 Joined KEGG pathway analysis using significantly
changed proteins and metabolites showed enrichment in lyso-
somes, sphingolipid related pathways, the GABAergic synapse,
and the Hippo signaling pathway (Fig. 6). Neuroinflammation
can alter GABAergic neurotransmission, which can impair cog-
nitive and motor function.52 Also, the Hippo signaling
pathway has been associated with neurodegeneration, where

its activation can lead to excessive neuronal cell death by pro-
moting apoptosis under oxidative stress.53 Most studies for
neurodegenerative diseases use aged mice. Here we showed
that the molecule profiles of GRN-null 2-month-old mice
already exhibit profound changes related to lysosomal dysfunc-
tion and neuroinflammation.

4. Conclusions

In summary, we evaluated different sample normalization
methods for MS-based multi-omics analysis using tissue
samples. We found that sample normalization significantly
impacts quantitative results in proteomics, lipidomics, and
metabolomics. To reduce variations between replicates and
reveal biological differences, we recommend normalizing
tissue samples first by tissue weight before extraction and then
by protein concentration after extraction. Briefly drying tissue
samples before weighing also helps reduce variation by remov-
ing the remaining buffer from dissection. With this two-step
sample normalization method, sample variation from starting
materials was minimized. The same total amount of samples
was injected into the LC-MS to control systematic error for
multi-omics analysis. As expected, pre-acquisition normalization
to protein concentration performed better than post-acquisition
normalization. Thanks to this normalization method, subtle bio-
logical differences can be revealed with great confidence. We dis-
covered key molecular changes in just 2-month-old mice from a
neurodegenerative mouse model lacking the GRN gene. The loss
of the GRN gene leads to multi-omics alterations related to lysoso-
mal dysfunction and neuroinflammation. Our normalization
method is applicable to all MS-based multi-omics studies using
tissue samples. Same principle would apply to cell culture experi-
ments: each sample should start from the same total cell count
and be further normalized to the protein concentration after
extraction to achieve the best accuracy and precision for multi-
omics analysis. We urge researchers to take the normalization
method into consideration when designing omics studies to
ensure reliable and accurate biomolecule quantification for bio-
logical comparisons.
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