
Nanoscale
Advances

REVIEW

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

6 
 2

02
4.

 D
ow

nl
oa

de
d 

on
 0

3.
11

.2
5 

14
:0

1:
37

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
View Journal  | View Issue
A review on rece
aDepartment of Chemical Engineering, BITS

E-mail: etika.krishna@pilani.bits-pilani.ac.i
bOffice of the Dean Research, Dr. Vishwan

Survey No, 124, Paud Rd, Kothrud, Pune, M

Cite this:Nanoscale Adv., 2024,6, 5773

Received 12th July 2024
Accepted 25th September 2024

DOI: 10.1039/d4na00572d

rsc.li/nanoscale-advances

© 2024 The Author(s). Published by
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for effective electromagnetic interference shielding
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The rapid proliferation and extensive use of electronic devices have resulted in a meteoric increase in

electromagnetic interference (EMI), which causes electronic devices to malfunction. The quest for the

best shielding material to overcome EMI is boundless. This pursuit has taken different directions, right

from materials to structures to process, up to the concept of sustainable materials. The emergence of

polymer composites has substituted metal and metal alloy-based EMI shielding materials due to their

unique features such as light weight, excellent corrosion resistance, and superior electrical, dielectric,

thermal, mechanical, and magnetic properties that are beneficial for suppressing the EMI. Therefore,

polymer nanocomposites are an extensively explored EMI shielding materials strategy. This review

focuses on recent research developments with a major emphasis on structural aspects and processing

for enhancing the EMI shielding effectiveness of polymer nanocomposites with their underlying

mechanisms and some glimpses of the sustainability approaches taken in this field.
1 Introduction

Electronic communications technology has signicantly
improved over the years, and a variety of electrical devices are
now widely employed in several sectors such as communica-
tions, civic, aircra, military, and others.1 Furthermore, these
electronic devices emit electromagnetic (EM) waves continu-
ously during operation, resulting in electromagnetic interfer-
ence (EMI) between electrical appliances that has a detrimental
impact on the operational accuracy of electronic equipment in
the electronics industry.2 However, EMI has become a new form
of pollution due to the proliferation of electronic devices in the
past few decades. The effects of this EMI can cause service
interruption, data loss, permanent damage to equipment, and
failure.3 Owing to such issues, the researchers investigated
several methods for preparing EMI shielding materials in the
quest for the perfect shielding material.

Metals are excellent conductors of electricity and may reect
EM waves; hence, metals are widely used in EMI shielding
applications.4–7 However, the shielding mechanism in metals is
dominated by the reection of EM waves, which is not always
a desirable option.4,5 In addition, relatively large densities and
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high production costs limit their extensive EMI shielding
applicability.8,9 Due to these limitations of metals researchers
focused on using polymers for EMI shielding applications
because of their properties such as light weight, exibility, low
density, ease of processing, chemical and thermal stability, and
most importantly, scalability. The polymers mostly allow the
EMI waves to pass through the surface for absorption
phenomena to happen rather than reection, which occurs in
metals.10 Polymer nanocomposites (PNC) represent a class of
materials that possess a unique combination of electrical,
thermal, dielectric, magnetic, and/or mechanical
properties.4–7,11 PNC characteristics may be tailored for EM wave
suppression depending on the type of polymer and ller
utilized. Due to their appealing properties, polymer nano-
composites have been considered an alternative to metals for
EMI shielding applications.4,5,12

Furthermore, polymer-based composites containing lossy
dielectric materials and/or magnetic materials are used to
eliminate EMI and protect electronic devices from unwanted
EM waves through absorption and reection. In general,
absorption dominant shielding materials are preferable for
equipment over reection, because reection can cause addi-
tional interference to nearby equipment.13 To mitigate these
problems caused by signal interference, efficient shielding
materials are required to defend the normal operation of elec-
tronic systems. Furthermore, EMI shielding materials should
have desirable characteristics such as low density, large
Nanoscale Adv., 2024, 6, 5773–5802 | 5773
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Fig. 1 Factors affecting the EMI shielding characteristics of the poly-
mer composites.
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absorption capability, thin, light weight, and wide-range
frequency bandwidth.14 In addition, the selection of materials
will also play an important role in designing EMI shielding
materials. Recent studies have demonstrated the growing
demand for low-cost and efficient EMI shielding materials as
a consequence of the greater usage of electronic devices and
electrical systems in industrial applications in the microwave
frequency range.15–18 Furthermore, several studies on thin,
lighter weight, effective shielding materials suitable for large
bandwidth absorption have been reported.19–23 Furthermore,
effective polymeric EMI shielding materials containing carbon-
based llers and metal-based llers, and conducting polymers
have been reported in the literature.4–7,11,24,25 However, poor
dispersion, phase separation, and high ller content are the
main challenges in these studies. Owing to such limitations,
various structural and processing strategies have been devel-
oped to achieve efficient EMI shielding materials.26–30 This
paper provides a comprehensive overview of structural and
processing strategies for polymer-based composites for elec-
tromagnetic interference (EMI) shielding.
1.1 Scope of the review

Polymer-based EMI shielding materials have been developed
using a variety of processing methods, as reported in the litera-
ture. Initially, EMI shielding materials are prepared by adding
essential lling materials such as conductive, magnetic, and
dielectric materials, either alone or in combination, into the
polymer matrix. Again, this strategy challenged to achieve the
desired EMI shielding performance due to poor dispersion,
phase separation within the matrix, and other drawbacks such as
high ller content.26–30 However, the excessive ller content
results in the expected shielding but reduces the mechanical
properties of the composites.12 These challenges have resulted in
renement and renaissance of the research approach in polymer
nanocomposites toward various structural strategies of nano-
materials and processing strategies of composites. This study
also includes glimpses of research exploring biodegradable,
longer lasting, and self-healing materials that nurture sustain-
ability in the EMI shielding materials. This reviewmainly focuses
on recent research developments, with a particular emphasis on
structural aspects and processing in enhancing the EMI shield-
ing effectiveness of polymer nanocomposites and their under-
lying mechanisms, as well as some glimpses into the
sustainability approaches included in this eld. The outcome of
this study will help to understand the aspects and material
properties such as electrical conductivity (s), magnetic perme-
ability (m), dielectric permittivity (3), and shield thickness (t) that
inuenced the EMI shielding performance as shown in Fig. 1.
2 The basic theory of EMI shielding
mechanism

The EMI shielding effectiveness is the primary metric for
determining the performance of an EMI shielding material,
which evaluates the EM wave's attenuation by the shield.
However, the attenuation of incident EM waves is primarily
5774 | Nanoscale Adv., 2024, 6, 5773–5802
achieved by a combination of reection, and/or absorption,
which exists due to mobile charge carriers and electric and
magnetic dipoles within the material.31 When an EM wave is
incident on the surface of the shielding material, an EM wave's
energy from the shield will be partly reected and partly
absorbed. The residual energy is neither reected nor absorbed
by the shield but is the energy that emerges from the shield, as
shown in Fig. 2.

The attenuation of EM waves occurs mainly by three major
mechanisms, namely reection (R), absorption (A), and
multiple internal reections (MR). A two-port vector network
analyzer (VNA) recorded the scattering parameters such as S11,
S12, S21, and S22 which can be correlated to the reection,
absorption, and transmission coefficients.

T ¼
�
�
�
�

PT

PI

�
�
�
�
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�
�
�
�

ET
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�
�
�
�

2

¼ jS12j2 ¼ jS21j2 (1)
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�
�
�

PR

PI

�
�
�
�
¼

�
�
�
�

ER

EI

�
�
�
�

2

¼ jS11j2 ¼ jS22j2 (2)

A = 1 − R − T (3)

where PT (ET), PR (ER), and PI (EI) are the power densities of the
transmitted, reected, and incident EM waves, respectively.

The total EMI shielding effectiveness (SET) of a particular
material is dened as the efficiency of the barrier material in
attenuating EM waves, and it includes losses due to EM waves'
reection and absorption and is expressed in terms of SET

31 as
follows:

SET (dB) = SER + SEA + SEM (4)

SET (dB) = SER + SEA = 10 log(1/T) = 10 log(1/S21
2) (5)

SER = 10 log(1/(1 − R)) = 10 log(1/(1 − S11
2)) (6)
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Pictorial depiction of the mechanism of an EMI shielding material.
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SEA = −10 log(T/(1 − R)) = −10 log(S21
2/(1 − S11

2)) (7)

where SEA, SEM, and SER are the shielding effectiveness (SE) due
to absorption loss, multiple internal reection loss and reec-
tion loss. Generally, SEM was negligible when SET was more
than 10 dB.2,3 SEM can be related to the microwave scattering
effect caused by the distribution of conductive and magnetic
particles, dielectric polarization, and interfacial polarization,
which helps to reduce the intensity of electromagnetic waves
entering the material due to the impedance mismatch between
air and the material surface.32
3 Structure-based strategies of
nanomaterials for the fabrication of
efficient EMI shielding materials

The electromagnetic theory explains that an impedance match
between the shielding material's surface and the incident EM
Table 1 EMI shielding values of conductive hybrid structure composites

Materials Filler content Con

rGO-CF 0.75 wt% 7.1
GNP-MWCNT 10 wt% 9.5
CNT/CF 0.35 wt% 0.8
MNPs@MWCNTs 4 wt% 107
SSF-CNT 3.5 vol% 100
Polyamide-6/CNT 0.3 wt% 100
PANI/CNT 25 wt% 190
PCL-MWNCT 0.25 vol% 4.8
Copper nanowires-thermally annealed
graphene/epoxy

7.2 wt% 120

PDMS/0.43 wt% rGO/0.33 wt% AgNW — 121

© 2024 The Author(s). Published by the Royal Society of Chemistry
wave results in greater wave penetration. To ensure effective
wave interaction, the shield should have adequate electrical
conductivity.4,6,7 Subsequently, a conductive material and/or
a hybrid of magnetic–dielectric materials were introduced.33–38

The dual benet of the nanoller produces additional effects
such as high multiple-interface polarisation, all of which are
useful in increasing shielding effectiveness.4,7 Previously,
several researchers published numerous studies on structure-
based strategies for the fabrication of EMI shielding mate-
rials, as seen in Table 1. The numerous strategies developed
with different structures, such as hybrids (e.g., Fe3O4 decorated
on graphene nanoparticles or multiwalled nanotubes), core–
shell (e.g., Fe3O4@MWNT), and layered structures, contain
various types of nanollers. A good EMI shielding material
should have good complex permeability and permittivity. In the
composites, combining these used nanollers has improved the
dielectric loss and the magnetic loss. The increased EMI
shielding effectiveness in composites containing structure-
ductivity (S m−1) SET (dB) Frequency (GHz) Ref.

3 37.8 8.2–12.4 39
47 20–40 40

× 10−3 42 8.2–12.4 41
0 30–60 0.5–12.0 42

47.5 8.2–12.4 43
25 8.2–12.4 44

7 27.5–39.2 12.4–18 45
60–80 0.04–40 46

.8 47 8.2–12.4 47

0 34.1 8.2–12.4 48

Nanoscale Adv., 2024, 6, 5773–5802 | 5775
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Fig. 3 Schematic representation of the proposed EMI shielding mechanism in PUGCNT nanocomposites. Reprinted with permission. Copyright
(2017).40

Nanoscale Advances Review

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

6 
 2

02
4.

 D
ow

nl
oa

de
d 

on
 0

3.
11

.2
5 

14
:0

1:
37

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
based nanoparticles can be attributed to the combined effects
of dielectric losses coupled with the magnetic losses arising due
to the presence of structure-based nanoparticles.49–51 The
structure-based strategies can signicantly increase the
complex permittivity and permeability of polymer composites,
thereby increasing the shielding performance of EMI shielding
materials.49–51 Furthermore, the structural renement of nano-
llers includes aspects such as doping/substitution in the entire
matrix or one of the llers, enhancing the current property, or
introducing new aspects of additional benet for the fabrication
of an EMI shielding material. Henceforth, this review explains
the various types of structure-based composites and their
mechanisms adopted to achieve maximum EMI shielding. The
main interest in this review paper discusses the role of hybrid
nanoparticle combinations, the different layered structure,
gradient structures, doped structures, and structures such as
foams, aerogels and core–shell structures. The fundamental
principles of segregated and template structures are also
discussed.
3.1 Hybrid structures

3.1.1 Conductive hybrid structures. The rst approach was
to create a hierarchical structure containing materials with
similar or distinct impedance properties that can attenuate
incident EM waves. These structures include combinations of
two or more conductive materials in the polymer composite.
These hybrid structures were synthesized by physical mixing,
synthesis of one ller in the presence of another, or co-synthesis
of two or more llers, which leads to the growth of a decorated
structure of one or more llers on the surface.39,41 The dual
benet of nanollers produces additional effects such as high
multiple-interface polarisation, all of which are useful in
increasing shielding effectiveness. A good EMI shielding
material should have good complex permittivity. In the
composites, combining these used nanollers has improved the
dielectric loss. The increased EMI shielding in composites
containing structure-based nanoparticles can be attributed to
the effects of dielectric losses arising due to the presence of
5776 | Nanoscale Adv., 2024, 6, 5773–5802
structure-based nanoparticles (Fig. 3). Previously, several
researchers published numerous studies on hybrid structures
and used them to fabricate EMI shielding materials, as seen in
Table 1.

3.1.2 Magnetic and conductive materials' hybrid struc-
tures. The second approach is to employ a hybrid structure with
a combination of magnetic or dielectric materials and
a conductive ller in the polymer composite for the enhance-
ment of EMI shielding efficiency. Subsequently, the addition of
conductive materials along with magnetic or dielectric mate-
rials generates the dual benet of nanollers and produces
additional effects such as high multiple-interface polarisation,
all of which are useful in increasing shielding effectiveness. In
addition, it is well known that two parameters, i.e., magnetic
loss and dielectric loss, primarily inuence EM wave absorp-
tion. In EMI shielding materials, combining a magnetic mate-
rial with conductive nanollers has improved the dielectric loss
and magnetic loss. In order to create induced magnetic and
dielectric losses, a suitable EMI shielding material should have
high complex permeability and permittivity. Complex permit-
tivity and permeability are caused by dipole polarization, elec-
tronic polarization, natural resonance, magnetic dipoles,
magnetic losses, eddy, and hysteresis losses, in which crystal
structure, size, and morphology may play a vital role. The
increased EMI shielding in composites containing structure-
based nanoparticles can be attributed to the combined effects
of dielectric losses coupled with the magnetic losses arising
from structure-based nanoparticles (Fig. 4).4,7 Therefore, many
researchers have focused specically on the complex hybrid
structure of nanollers to fabricate an efficient EMI shielding
material, which is listed in Table 2.

3.1.3 Magnetic–dielectric–conductive hybrid structures.
The third approach is to create a hierarchical structure in the
polymer composite containing a combination of magnetic and
dielectric materials along with a conductive ller. In these
hierarchical structures, decorating magnetic nanoparticles on
dielectric materials or vice versa facilitated a protective encap-
sulation of decorated nanoparticles on the surface of other
nanoparticles to prevent agglomeration of the nanoparticles.69
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Previously, researchers reported that magnetic nanoparticles
decorated on dielectric nanoparticles have better dielectric
properties than dielectric nanoparticles decorated on magnetic
nanoparticles because of increased O-vacancy concentration
(oxygen vacancy concentration refers to a defect caused by
a decrease in oxygen content, leading to an increased number of
oxygen vacancies. These vacancies signicantly inuence the
structural, physical, and electrical properties of the material in
dielectric nanoparticles of larger grains and O-vacancy-induced
enhancement in interfacial polarisation between the dielectric
nanoparticles and magnetic nanoparticles, respectively.70–73

Recent studies have investigated the use of dielectric mate-
rials, including SnO2, TiO2, ZrO2, ZnO, Al2O3, carbon materials,
and polymers, as a dielectric source to impart dielectric losses
and their use alone or in combination with magnetic and
conductive materials.74 For example, Biswas et al. synthesized
graphene oxide sheets decorated with BaTiO3 and Fe3O4 nano-
particles. These nanoparticles are combined with modied
MWNT and embedded in the polycarbonate (PC)/polyvinylidene
uoride (PVDF) matrix. The nanocomposite reported SET values
of 32.5–35 dB over the frequency range of 12–18 GHz. It can be
observed that the composites demonstrated an increase in SET
Fig. 4 A schematic illustration of the distribution of the conductive filler
treatment. Reprinted with permission. Copyright (2019).52

© 2024 The Author(s). Published by the Royal Society of Chemistry
values due to the synergistic effect of hybrid lossy materials and
selective localization of graphene oxide (GO) in PC and MWNT
in PVDF, which retains the electrical conductivity of compos-
ites.74 The authors also fabricated composites through multi-
layer assembly, having outer layers with a modied BaTiO3/
Fe3O4 co-doped GO/modied MWCNT/PC/PVDF composite and
inner layers with MWCNT/PVDF modied in the composite.74

The authors also reported that the SET values of composites
fabricated through multilayer assembly further increased to 46
dB over the frequency range of 12–18 GHz.

Jin et al. synthesized a hybrid structure made of graphene
nanoplates along with Fe3O4 decorated on BaTiO3 (GFBT) in
a two step hydrothermal process. The BaTiO3 particles of
20 nm are primarily coated on the Fe3O4 nanospheres forming
the hybrid structure of Fe3O4 and BaTiO3. The hybrid structure
containing BaTiO3/Fe3O4 nanoparticles of about 200 nm
diameter anchored on the surface of graphene was used along
with MWNT in methyl vinyl silicone rubber. The composite
containing 16 wt% ller loading with a ratio of 1 : 5 of MWNT :
GFBT exhibited SET values of 26.7 dB in the frequency range of
1–20 GHz for a sample thickness of 2.6 mm.75 Sambyal et al.
reported an encapsulated polypyrrole composite with the
in PVDF/CNTs/Ni@CNTs flexible composite films before and after heat

Nanoscale Adv., 2024, 6, 5773–5802 | 5777
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Table 2 EMI shielding values of conductive and magnetic hybrid structure composites

Materials Synthesis method
Conductivity
(S cm−1)

Thickness
(mm) Polymer matrix

SET
(dB)

Frequency
(GHz) Ref.

PANI/15 wt% BaFe12O19 (BF) Co-precipitation 0.34 2 PANI 19.7 2–18 53
PANI/28 wt% Mn0.5Zn0.5Fe2O4 2 PANI 6–20 0.03–1 54
3% Graphene decorated
with nickel NPs

Co-precipitation 3.10 × 10−4 1 Polybenzoxazine >20 8.2–12.4 55

10 wt% CNT/12 wt% Ni@CNT Magnetic eld-supported
solvothermal process

2.57 0.5 PVDF 51.4 12.4–18 52

rGO-FeCo-diamine monomer
4,40-diamino diphenyl
methane,
MWCNT

In situ reduction using
a solvothermal process

1 × 10−3 PVDF 41 12.4–18 56

10 wt% Fe3C-carbon Carbonization of
melamine
and iron salt

PVDF 35 14–18 57

90 : 10 ratio of Fe3O4 and
carbon black (CB)

10 Natural rubber 14.7–
23.1

1–12 58

0.25 vol% Fe3O4-MWCNT 5 Polycarbonate (PC)/
PVDF

38 18 59

0.25 vol% Fe3O4-MWCNT 5 PC/PVDF 30–36 8–18 60
0.15 vol% NiFe2O4-MWCNT 5 PC/PVDF 19.7 2–18 60
0.28 vol% CoFe2O4-MWCNT 5 PC/PVDF 6–20 0.03–1 60
Modied Gr nanoplatelets
and MWCNT-Fe3O4

Polyurethane 27.5 8–12.4 61

Fe3O4-CNT 9 × 10−3 1.1 PVDF 32.7 18–26 62
Fe3O4-GNP 2 × 10−2 1.1 PVDF 35.6 18–26 62
rGO@Fe3O4-MWCNT 1.8 × 10−3 5 PC/polystyrene >30 8–18 63
0.5 wt% rGO deposited with
carbon ber-Fe3O4-9 wt%
modied rGO

11.04 7 Epoxy matrix >30 8.2–26.5 64

rGO-Fe3O4 7 × 10−4 PC matrix 28 8–18 65
rGO-Fe3O4 4 × 10−4 PC matrix 33 8–18 65
4 wt% CNT-5 wt% rGO-Fe3O4 PC matrix 43.5 8–12.4 66
45 wt% NiFe2O4-5 wt% rGO 2.16 × 10−12 2 Propylene 28.5 5.8–8.2 67
NiCoFe2O4 (NCF)-CB 1.513 × 10−4 1.5 Polyvinyl alcohol (PVA) 27 8–18 68
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combination of rGO, Fe3O4 and barium strontium titanate
(BST) nanoparticles. The BST/rGO/Fe3O4 (BRF) hybrid was
synthesized by co-precipitation. In this process, the precursors
Fig. 5 Schematic representation of a possible mechanism of EMI
shielding in the PBRF composite. Reprinted with permission. Copyright
(2018).76

5778 | Nanoscale Adv., 2024, 6, 5773–5802
rGO and BST nanoparticles were added to the precursor solu-
tion of Fe3O4, thus forming the hybrid structure of nano-
particles. The hybrid composite showed an EMI SE of around
48 dB for a thickness of 2.5 mm in the X-band frequency range
(Fig. 5).76

3.2 Layered structures

The layered structures provide ultralight, low density, exible,
scalable, and highly conductive micrometer-thick EMI shields
that can be made using standard polymer processing methods
for exible, wearable, and smart electronics. The production of
multifunctional EMI shields is the major challenge to be
addressed. The industries require EMI shields that not only
limit the detrimental impacts of EM waves but also have
exceptional mechanical and thermal properties.77,78 The second
major challenge is the necessity to manufacture EMI shields
that absorb a large amount of the incoming EM waves.
Furthermore, several research studies have only focused on the
development of highly conductive EMI shields that rely heavily
on EM wave reections. However, this strategy is undesirable
for military and medical applications that demand a high level
of EM wave absorption with minimum reections. Indeed, EM
waves reected from a conductive EMI shield can serve as
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 3 The layered structure composites and their EMI shielding effectiveness values

Materials Thickness (mm) Conductivity (S m−1) SET (dB) Frequency (GHz) Ref.

PP-MWCNT/PP-MA/10 wt% PVA-2 wt% MWCNT 1 0.03 36.7 1–2 80
PP-MWCNT/PP-MA/10 wt% PVA-2 wt% Gr sheets 1 21 24.5 1–2 80
Cellulose/PET oxide-CNT 0.15 20 35 8–12 81
PPEK/MWNT 11 39 61.5 8–12 82
MWNT/PMMA 0.3 1.5 40 8.2–12.4 83
SWNT/cellulose 0.03 — 40 12–18 84
PVDF/GNP-Ni-CNT 0.6 0.15 46.4 12.4–18 85
T-ZnO/Ag/WPU 0.25 63 500 87 8.2–12.4 86
GO/PHDDT 0.02–4 — 37.92 8–12 87
CNT/BN/rubber 1.4 98 31.38 8–12 88
PVDF-MWCNT-Mn-Fe3O4/Ni-C-PVDF 0.6 — 58 12–18 89
PC/PVDF with MWCNT-Fe3O4 0.9 1.1 × 10−4 64 12–18 90
PVDF/CoNi/MWNT 0.95 1 41 20–40 91
Ni@nylon mesh/PP 2.5 2.26 50.6 8–12 92
PC/ethyl methyl acrylate/MWCNT/GNP — 1.91 × 10−1 34 8.2–12.4 37
PANICNPS 10 7.6 × 10−1 10–20 8 93
Fe3O4@rGO/T-ZnO/Ag/WPU 0.5 22 700 87.2 8–12.4 94
FeCo@rGO/Ag/WPU 0.3 1428.57 50.5 2–18 95
FeCo@rGO/Ag/NWF/WPU 0.1 60 000 77.1 2–18 96
Silicon rubber/Ag@HGMs/Fe3O4@CNT 2 279.3 59.39 8–12.4 97
FeCo@rGO/EbAg/WPU — — 84.8 8–12.4 98

Fig. 6 Schematic of electromagnetic microwave dissipation in the
PVA/MXene multilayered films. Reprinted with permission. Copyright
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a secondary source of EMI, affecting the operation of neigh-
bouring electronics.

The manufacturing of multilayer EMI shields has recently
been suggested as a potential strategy to decrease reection and
increase EMwave absorption. Amultilayer structure comprising
suitable nanomaterials and polymers was used to create
multifunctional EMI shields with excellent EMI shielding
properties. Furthermore, it has been demonstrated in several
investigations that a layered structure of conductive and
magnetic materials may signicantly improve the absorption
component of the shielding and, to a large degree, the overall
EMI shielding effectiveness (EMI SE) of developed structures.
This study concisely described the main ideas of EMI shielding,
as well as the underlying shielding mechanisms of multilayer
shields, and then provided a complete evaluation of fascinating
multilayer shield research.

The current state-of-the-art is to prepare a multilayer struc-
ture EMI shielding material with soness, durability, rapid
thermal dissipation, and desirable resilience and endows the
composites with excellent shielding effectiveness.79 Layered
structures, such as sandwich structures, have been proven to be
an effective strategy for attenuating EM waves. Furthermore, the
layer-by-layer (LbL) assembly is a reliable process for making
thin-lm materials, which is used to build the layered structure
composites required for EMI shielding applications. Therefore,
this process was utilized to manufacture multilayer structured
coatings for high-efficiency EMI shielding.79 The multilayer
structure, comprising various conductive materials with
different impedances or conductive and/or magnetic materials,
creates unique interfaces among the materials that generate
multiple internal reections for EM waves, thereby boosting
EMI shielding performance.
© 2024 The Author(s). Published by the Royal Society of Chemistry
In addition, a few efforts have been made to produce highly
efficient multilayer composites for EMI shielding applications.
These studies reported that multiple internal reections, along
with prevailing shielding mechanisms, impedance mismatch,
and dielectric losses contribute to the improvement of the
shielding effectiveness. The preparation methods for producing
thin-lm composites in the form of multilayer stacks have been
(2020).
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Fig. 7 (a) EMI shielding mechanism of the Fe3O4@rGO/MWCNT/WPU composite. (b) Polarization relaxation loss mechanism of the interface
between Fe3O4@rGO/WPU and MWCNT/WPU. Reprinted with permission. Copyright (2020).99
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developed, and considerable work has already been published
and is listed in Table 3. Layered structure composites are cate-
gorized based on a physical assembly of layers, self-assembled
layered or in situ layered structures with different combina-
tions of llers and different matrices (Fig. 6).
3.3 Gradient/graded structures

EMI shieldingmaterials that are lightweight, exible, and readily
functionalized offer greater application possibilities in a wide
range of applications such as portable electronics and wearable
materials. To achieve this, gradient layered structures have been
created by layering polymer nanocomposites and increasing or
decreasing the concentration of llers layer by layer from the EM
wave incident layer.6 This gradient structure strategy can facili-
tate the creation of an extremely efficient EMI shielding material
with low reection. However, this gradient structure is mostly
constrained by the manufacture of lms and solid composites;
few studies have been undertaken on creating gradient struc-
tures for composites using simple protocols (Fig. 7).

Xu et al. have prepared exible waterborne polyurethane
(WPU) composite lms by developing gradient structures as the
density difference among rGO@Fe3O4 and T-ZnO/Ag nano-
particles.94 These gradient structures demonstrated signicant
EMI shielding performance of 87 dB with as low as 39%
reection power. The reection power value of the Fe3O4@rGO/
MWCNT/WPU composites may be reduced to 27%.94 This
Table 4 Gradient structure composites and their EMI shielding effective

Materials Thickness (mm) Co

GNP/Ni/PMMA 2.5 —
WPU/Fe3O4@rGO/MWCNT 0.8 3.7
3 Layers of SWCNT/vinylidene uoride 1.12 —
Ti3SiC2-g-Al2O3/SiC 46 10
CNT/SiO2 5 —
Fe/Al-Fe/Fe 1 0.1

5780 | Nanoscale Adv., 2024, 6, 5773–5802
suggested that the gradient structure containing both electric
and magnetic materials reduced their reection power in the
gradient structure by regulating rGO content. H. J. Im et al.
designed a multilayer graded structure by incorporating llers
of GNP and Ni in the polymethyl methacrylate (PMMA) matrix.
Firstly, the Ni was reduced onto GNP and then incorporated into
PMMA.100 The gradient structure consisted of 0.83 mm thick
three layers, where the top layer containing the concentration of
GNP/Ni ller loading increased by 20 wt%. The intermediate
layer contains 30 wt% ller loading, and the bottom layer
contains 40 wt% ller loading. The gradient structure exhibited
an EMI SE value of 61 dB over the X-band frequency range of 8–
12.4 GHz. The gradient structure has demonstrated 3 orders
higher thickness than a monolayer of 2.5 mm thickness con-
taining 30 wt%GNP/Ni ller loading. The authors attributed the
abrupt increase in ller loading by 10 wt% to have helped to
develop a conductive network structure between layers in the
direction of propagation of EM waves. It can create multiple
additional internal reections between the stacked layers. It can
also be observed that the top layer containing lower ller
loading supports better impedance matching and reduces
surface reections. It can enhance the absorption of EMI waves
in the gradient structure.100 A. Sheng et al. designed a conduc-
tive gradient structure for reducing reections in the hybrid
system.99 The gradient structure was constructed by three layers
of Fe3O4@rGO. The rGo ller loading was increased from the
top layer to the bottom layer in the gradient structure and the
ness

nductivity (S m−1) SET (dB) Frequency (GHz) Ref.

61 8–12 100
5 35.9 8–12 99

−6 35 101
00 50 8.2–12.4 102

−30 8–12 103
6 70–80 0.03–1.5 104

© 2024 The Author(s). Published by the Royal Society of Chemistry
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nal layer containing MWNT in the WPU matrix. The gradient
structure exhibited an EMI SE value of 35.9 dB for the composite
containing the 11.2 wt% Fe3O4@rGO-30 wt% MWNT-WPU
composite within the X-band frequency range of 8–12.4 GHz.99

The composites containing gradient structures have enhanced
the EMI SE value and are listed in Table 4.
3.4 Doped structures

The doping of EMI shielding materials and their enhancement
strategies can be divided into three categories: (i) doping
excellent conductive nanollers, (ii) increasing the loading
content of nanollers and (iii) approaching the homodispersity
of nanollers in the polymer matrix. Despite substantial
research on the fabrication of EMI shielding materials, the true
potential of doped structures for this use has yet to be investi-
gated. The doping of nanollers such as graphene helps to
retain the sp2 electronic structure by increasing the electrical
Table 5 Doped structure composites and their EMI shielding effectiven

Materials Thickness (mm) Co

Ti3C2Tx/c-PANI 0.04 24
RGO/PANI/BNSF 2.90 —
p-TSA/PANI/GNPs 1.5 57
PANI/CSA-coated CNF 0.088 38
MWCNTs/sub-SF/PANI 5 —
PC/sub-G/MWCNT 5 6.1
N2-doped graphene nanosheet – epoxy 2.4 —
Fe3O4/CCTO/P-gC3N 1 —
PANI/Ni-Cd-ferrite 2.3 44
Silicone rubber/POE/IL-MWCNT 1.2 0.1
TPU/sub-G 1 10
SBR/IL-MWCNT 5 10
PS/IL-MWCNT 1 0.0
Pyrrole/Nd-Co 2 —

Fig. 8 Schematic representation of the microwave attenuation mechan
Copyright (2019).109

© 2024 The Author(s). Published by the Royal Society of Chemistry
conductivity of doped structures.105 Currently, n-type doping of
carbon-based nanollers such as graphene with heteroatoms
such as nitrogen was proposed as a viable method for recov-
ering graphene's electronic properties. Furthermore, sulfur is
a comparatively recent n-type dopant, and its ability for appli-
cations apart from electrochemistry has yet to be thoroughly
investigated. Zhou et al. and Denis et al. found that S-doped
graphene produces a thiophene-like structure that has a favor-
able effect on graphene's magnetic and electronic
properties.106–108 This review reported that doped nanollers in
a laminated structure exhibit considerably larger EMI shielding
effectiveness than the undoped laminate at minimal thick-
nesses. This observation is attributed to the n-doping effect of
nanollers, which improves the electrical conductivity of doped
structures (Fig. 8). The composites containing doped nano-
structures have enhanced the EMI SE value and are listed in
Table 5.
ess

nductivity (S m−1) SET (dB) Frequency (GHz) Ref.

40 36 8–12 110
50.5 2–18 111

.5 14.5 8–12.4 112

.5 30 0–15 113
36 8–18 114

× 10−2 33 8–18 65
40 8–12.4 115
30 8–12.4 116

70 42.7 8–12.4 117
4 25 8–12.4 118

25 8–12.4 119
35 2–18 120

1 7 8–12.4 121
15 8–12.4 122

ism in RGO/PANI/BNSF nanocomposites. Reprinted with permission.
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Fig. 9 Possible electromagnetic shielding mechanism of the Ti3C2Tx/RGO/ANFs hybrid aerogel. Reprinted with permission. Copyright (2022).128
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3.5 Aerogel composites

Aerogels have emerged as one of the most interesting materials
of the late 20th century. The innovative processing technique
yields aerogels with remarkably high porosity, large specic
surface area, low density, high dielectric strength, and low
thermal conductivity, making it possible to utilize these mate-
rials in various applications such as aerospace, biomedical
devices, energy storage, EMI shielding materials, sensors, and
coatings.123 Since Kistler invented the aerogel with silica, aero-
gels have been created from a wide range of materials, that
includes metal oxides, biopolymers, resins, etc.124 Furthermore,
Table 6 Aerogel composites and their EMI shielding effectiveness

Materials Type Method

PDMS/0.21 wt%
rGO/0.07 wt% SWCNT

Aerogel foams Freeze dry

0.51 wt% CNT/cellulose Template Ice-templa
drying me

0.74 vol% Ti3C2Tx/
graphene/epoxy

Nanocomposite Hydrother
and freeze

1.95 wt% PDMS/reduced
graphene

Flexible foams Freeze dry

Polyurethane (WPU)/silver
nanowire (Ag-NW)

Flexible nanocomposites Freeze dry

0.8% Graphene/epoxy Nanocomposite Freeze dry
thermal an

0.2 wt% TAGAs/epoxy Nanocomposite Freeze dry
thermal an

6.1 wt% MXene (Ti3C2Tx)/
sodium alginate (SA)

Aerogel Freeze dry

Nacre-mimetic graphene
(aerogel)/PDMS

Aerogel Bidirection
and freeze

1.64 wt% Ti3C2Tx
MXene/epoxy

Foam Sol–gel fol
freeze dryi

0.33 wt% Graphene/
phenolic resin/epoxy resin

Aerogels Hydrother

5782 | Nanoscale Adv., 2024, 6, 5773–5802
a range of nanomaterials can be added into the aerogel matrix
to construct composites with aerogels. Moreover, an aerogel
network has pore diameters in the order of nanometers. The
further addition of nanomaterials into an aerogel produced
a composite with superior functional properties including
increased specic surface area, improved mechanical strength,
and better thermal and electrical conductivity.125

Since this rst use of carbon nanomaterials in the produc-
tion of an aerogel structure, the utilization of a variety of
nanomaterials for the development of high-performance aero-
gel structures has grown exponentially. For example, carbon
Conductivity
(S m−1)

SET
(dB)

Frequency
(GHz) Ref.

ing method 120 31 8.2–12.4 130

te freeze
thod

38.9 51 8.2–12.4 131

mal assembly
-drying

695.9 50 8.2–12.4 132

ing 65.6 43.6 8.2–12.4 133

ing 587 64 8.2–12.4 134

ing and
nealing

980 32 8.2–12.4 135

ing and
nealing

96 25 8.2–12.4 135

ing 2211 48.2 8.2–12.4 136

al freezing
drying

0.5 65 8–12 137

lowed by
ng

184 46 8–12.4 138

mal 73 35 8–12.4 139

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 10 Schematic illustration of EMwave dissipation in the PVDF/CNT/SiCnw composite foams. Reprinted with permission. Copyright (2023).140
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nanomaterials such as carbon nanotubes, graphene, and
carbon nanobers have been incorporated into aerogels to
improve the electrical conductivity and performance for appli-
cations such as supercapacitors, sensors, and batteries126,127

(Fig. 9).
In other earlier works, the lightweight 3D structure design is

a primary prerequisite in EMI shielding applications. The actual
EMI SE for lightweight porous materials was determined in
terms of specic shielding effectiveness (SSE) and absolute
shielding effectiveness (ASE), which dene the accurate
shielding performance of the material by considering three
factors: EMI SE, density (r), and thickness (t), which are calcu-
lated as follows,
Table 7 Foam composites and their EMI shielding effectiveness

Materials Thickness (mm) Con

TG-CN/PMMA 2 1
RG-CN/PMMA 2 0.1
GN-CN/PMMA 2 0.8
PVDF/Ni-chains 2 0.01
Silicone rubber/MWCNTs/Fe3O4 2 14.6
GO/NF/epoxy 0.5 150
fMWCNTs/CTBN/epoxy 2 0.43
PMMA/GNPs-MWCNTs 2 0.1
CNTs/PMMA laminated 2 —
GNPs/PMMA 2
EP/ZrP-MWCNT 2.2–2.5 3.02
PMMA/Fe3O4@MWCNTs 2.5 2 ×

PMMA/MWCNT 3 —
Microcellular epoxy/MWCNT 2.8 1 ×
PC/GNP 5 1 ×

PVDF/MWCNT 1.7 0.44
PVDF/10 wt% GNP 3 0.52
Silicone/30 wt% o-MWCNTs 6.4 —
PU/31.3 wt% rGO 2.5 —
Epoxy/0.94 vol% AgPs/0.44 vol% rGF 3 45.3
PDMS/2.7 wt% GF/2.0 wt% CNTS 2 � 0.05 31.5

© 2024 The Author(s). Published by the Royal Society of Chemistry
SSE = SET/r dB cm3 g−1

ASE = SSE/t = SET/rt dB cm2 g−1

The pores developed in the lightweight 3D structure decrease
the density of the material and are also supposed to increase
multiple internal reections of EM waves, increasing EMI SE
values. Porosity has been integrated into the material to reduce
the density of the EMI shieldingmaterials to get the best of both
SE and lightweight, and the impact of porosity on the properties
and structure of porous materials has been adequately studied.
Hu et al. investigated multifunctional aerogel lms made with
Kevlar ber, carbon nanotubes (CNT) as reinforcing llers, and
ductivity (S m−1) SET (dB) Frequency (GHz) Ref.

34 8.2–12.4 144
19.5 8.2–12.4 144
26 8.2–12.4 144
26.8 8.2–12.4 145
27.5 8.2–12.4 146
65 1–3 147
22.90 12–18 148
36 8–12 149
36 8–12.4 150

8–12.4 151
× 10−4 20.5 12–18 152
10−4 16 8.2–12.4 153

— 8.2–12.4 GHz 154
10−7 9 12–18 GHz 155
10−7 39 8–12 GHz 156

34.1 18–26.5 GHz 157
37.4 26.5–40 GHz 158
73 12.4–18 GHz 159
−50.8 2–18 GHz 160
58 8.2–12.4 GHz 161
833 8.2–12.4 GHz 162
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hydrophobic uorocarbon resin as a polymer matrix. The nal
material comprises self-cleaning properties due to the hydro-
phobic surface nature of the lm, having good electrical
conductivity leading to joule heating properties and good EMI
shielding properties of 54.4 dB at a thickness of 546 mm in the X-
band region (8–12 GHz)129 (Table 6).

3.6 Foams

Polymer foams have attracted great attention in designing EMI
shielding materials due to their advantage of being lightweight,
while the unique porous structure can effectively absorb EM
waves by extending the travel path.25 Foam composites
demonstrated absorption-dominated shielding phenomena,
which meets the present standards of EMI shielding applica-
tions. Furthermore, conductive polymer foams, carbon foams,
inorganic metal foams andMXene foams are gaining popularity
for use in EMI shielding applications. The primary goal of this
review is to study the current state of research in the design of
polymer composite foams as EMI shielding materials (Fig. 10).

Zhang et al. used subcritical CO2 (scCO2) as a physical
foaming agent to fabricate a graphene-reinforced PMMA
composite. The established multi-interface microporous struc-
tures have the potential to improve shielding effectiveness by
allowing for multiple internal reections and resolving the
composites' pervasive brittleness.141 Furthermore, Zhang et al.
fabricated three-dimensional (3D) compressible foam with
conductive MXene sheets. The prepared conductive network
was covered with a thin layer of elastic polydimethylsiloxane
(PDMS) to increase mechanical robustness.136 Aer 500
compression–release cycles, the PDMS-coated foam achieved
a superior EMI SE value of 48.2 dB, demonstrating its remark-
able ability for compressible and robust EMI shielding gaskets.
Gupta et al. formulated a 2,20-azobisobutyronitrile (AIBN),
a chemical blowing agent used to prepare the CNT-PS foam
composite. When heated, AIBN decomposed and released
Fig. 11 Cartoon illustrating the EMI shielding mechanism for the comp
Fe3O4]. Reprinted with permission. Copyright (2018).165

5784 | Nanoscale Adv., 2024, 6, 5773–5802
nitrogen gas inside the composite structure, providing
adequate EMI shielding efficiency.142 Shen et al. used amodied
water vapour-induced phase separation method to create
porous PVDF/MWNT/graphene composites.143 Furthermore,
syntactic foam is a foam composite of hollow fragments
distributed in a matrix. Two techniques have been used,
including the use of conductive hollow particles as llers for
syntactic foams and the addition of excess conductive ller to
syntactic foams. Furthermore, the template process has been
illuminated to manufacture foam-based shielding materials
due to its ease of operation, controllable structure, and diverse
alteration. The polymeric composition can be coated on the pre-
constructed conductive foam in reverse on the composite foam
for EMI shielding. Foam-based structures were boosting
multiple reections and so on. Similarly, processing aspects like
modications in blending techniques, layered assembling, and
even irradiation process boost EMI shielding through uniform
dispersions, sequential attenuation, etc. Herein, we attempt to
bring in a consolidated review of recent research with insights
on the structural and processing-based approaches and their
combinations and their underlying mechanism that has boos-
ted the EMI shielding performance. Several researchers
prepared various foams and determined their EMI shielding
effectiveness which are listed in Table 7.

3.7 Core–shell structures

Core–shell nanoparticles are a special class of nanostructured
materials that have attracted a great deal of interest in the last
two decades due to their unique characteristics and wide range
of applications. A variety of “core–shell” nanostructures with
tailorable characteristics may be generated by properly regu-
lating the “core” and “shell”, which can be utilised to build
materials for EMI shielding. The primary goal of this study is to
emphasise the fundamental notion of EMI shielding materials
that have been discussed in the literature for various systems, as
osites (a) F–F composites [PVDF–Fe3O4], (b) E–F composites [HDPE–

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 8 Polymer composites containing core and shell particles and their EMI shielding effectiveness

Materials
Thickness
(mm) Conductivity (S m−1)

EMI SE
(dB) Frequency (GHz) Ref.

PVDF/FeCoSiO2@MWNT (10 wt%) 3 — 35 2–18 164
Fe3O4@C@PANI (Fe3O4@C : PANI:1 : 9) 1 4.06 × 10−1 65 2–8 166
FeCo@SiO2@PPy 2.1 — 65.17 2–18 167
PVDF/F3O4 (3 wt%)@SiO2@MWCNTs
(10 wt%)

0.6 2 × 10−3 40 12–18 168

fMWCNT-Fe3O4@Ag/epoxy (MWCNT :
Fe3O4:9 : 1)

2 28 35 8.2–12.4 169

F3O4 (20 wt%)@SiO2@PPy 0.27 71 32 8–12.4 170
PVDF/PS/HDPE/MWCNTs (70/20/10/
1 vol%)

2.5 1.2 25 8–12.4 165

Ni@SnO2@PPy 3.5 14.28 30.1 2–18 171
Co@C-PVDF — — 25.49 8–12.4 172

Fig. 12 Schematic EMI shielding mechanism for the PLA/Ag
composites with novel segregated electrically conductive Ag
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well as various synthetic and manufacturing methodologies for
creating acceptable EM attenuation.

In this approach, the prepared core@shell may be made up
of two distinct types of substance, inorganic@organic and vice
versa, or the same type of substance with different structures,
such as inorganic@inorganic or organic@organic. The
construction materials or the core or shell thickness ratio can
modify the properties of these materials. The main drawback in
the preparation of core@shell particles is a complex and time-
consuming strategy.

Previously, a few researchers claimed that reinforcing
core@shell particles in the polymer matrix can improve the
polymer's complex permittivity and permeability. It can also
help with impedance matching, which occurs as a result of
several relaxation mechanisms in the polymer. In the core and
shell nanoparticles with a specic thickness of shells, an
unexpected dielectric behavior that strengthened EMI shielding
effectiveness was demonstrated. On the other hand, Liu et al.
presented the well-dened shells, unique morphological char-
acteristics, desirable magnetization, large surface area, and
large porosity of the yolk-double-shelled Fe3O4@SnO2 particles
which signicantly enhanced the EMI SE characteristics of the
composite.163 The signicant increase in the absorption of the
EM wave of the composite containing Fe3O4@SnO2 can be
attributed to the individual shells in the yolk–shell structure,
which provided the synergistic effect between the core con-
taining magnetic Fe3O4 and the dielectric shell containing SnO2

nanoparticles. Zhang et al. chose polyaniline (PANI) and
bagasse ber (BF) to develop a heterostructure by insulating
PANI over the ber surface to form a conductive lightweight
material. The properties depend on the total coverage of PANI
on the ber surface as the higher the PANI content the greater
the electrical conductivity. The material showed good complex
permittivity because PANI improves dipolar polarization and
conductivity.81

The exceptional EMI shielding properties of these nano-
particles were attributed to the complementary activity of the
dielectric loss and themagnetic loss generated in the composite
due to core–shell structure nanoparticles. Owing to the pres-
ence of the conductive shells or core, the eddy current effect was
© 2024 The Author(s). Published by the Royal Society of Chemistry
effectively minimized, and anisotropy energy was increased in
the core–shell structured nanoparticles.164 Owing to the pres-
ence of the magnetic core or shell, magnetic losses such as
natural ferromagnetic resonance loss, domain wall resonance
loss, and hysteresis loss are produced, which usually play an
important role in the enhancement of EMI shielding effective-
ness (Fig. 11).

In general, composites containing core@shell nanoparticles
are receiving great attention due to their potential advantages
such as core-corrosion safety, interfacial polarization, comple-
mentary behavior, and connement effect. Furthermore, a wide
range of composites containing core@shell nanoparticles with
reasonable attenuation of EM waves have been investigated and
data are listed in Table 8.
3.8 Segregated structures

The conductive polymer composites were incorporated with
large loadings of conductive llers into the polymer matrix to
form a percolated network structure which increases the elec-
trical conductivity of the polymer composite. This conventional
approach in the fabrication of polymer composites improves
their density but is not a cost-effective or industrially viable
method. Owing to such issues, the segregated structure facili-
tates the formation of a percolated network with low ller
loadings in the fabrication of polymer composites among all
networks. Reprinted with permission. Copyright (2018).
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Table 9 Segregated structure composites and their EMI shielding effectiveness

Materials Filler content Thickness (mm) Conductivity (S m−1) SET (dB) Frequency (GHz) Ref.

PP/CNT/CB foam 5 wt% 0.26 6.67 × 10−1 72.23 8.2–12.4 176
PS/MWNT 7 wt% 1.8 11 26.3 8.2–12.4 177
PDMS/MWNT/SGM SGM-30 vol%; MWNT-3 vol% 2.7 50 55 8.2–12.4 178
PDMS/MWNT/HGM HGM-40 vol%; MWNT-3 vol% 2.7 47.5 53 8.2–12.4 178
PMMA/rGO 2.6 vol% 2.9 91.2 63.2 8.2–12.4 179
PMMA/rGO/magnetite rGO-1.1 vol% 2.9 — 29 8.2–12.4 179

Magnetite-0.5 vol%
NR/Fe3O4@rGO 78% Fe3O4 1.8 6.1 42.4 8.2–12.4 180

10 phr rGO
NR/rGO 10 phr rGO 1.8 8.1 34 8.2–12.4 180
CNT/UHMWPE 4 wt% 2 30.1 32.6 8–18 181
PLA/Ag 5.89 vol% 1.5 254 50 8.2–12.4 182
PVDF/MWNT 7 wt% 3 6 45 8.2–12.4 183
PLLA/MWNT 1.1 wt% 1.5 25 30 8.2–12.4 184
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other structure-based strategies. Typically, two approaches are
employed for developing segregated structures. One approach is
the addition of conductive llers to form a percolated network
in the polymer matrix through the densication process. The
conductive ller loadings in the segregated network structure
resulted in a percolated conductive network structure inte-
grated with the polymer matrix. Furthermore, the segregation of
conductive llers by distinct polymeric bulks improves the
composite's EMI shielding performance. The other approach is
to prefabricate 3D integrated conductive structures, and
subsequently ll the pores with the polymer matrix (Fig. 12).

Li et al. presented a novel process for producing a segregated
composite of poly(phenylene sulde) (PPS) containing carbon
nanotubes (CNT).174 Firstly, PPS beads were mechanically
blended with CNT to produce PPS complex granules coated with
CNT. This was followed by compression molding into segre-
gated composites of CNT/PPS. The EMI shielding effectiveness
of the segregated composite of CNT/PPS was signicantly
higher than that of the random ones. Segregated structures
exhibited excellent EMI shielding effectiveness.174 Similarly,
Sun et al. studied an electrostatic assembly method for
producing highly conductive polystyrene (PS) nanocomposites
containing MXene.175 In this method, the pre-coating of nega-
tive MXene on positive PS microspheres was followed by
compression molding. The resulting PS composites containing
MXene have a lower percolation threshold limit of 0.26 vol%,
Fig. 13 Schematic diagram of the EM waves absorption in the Fe3O4@
(2020).186

5786 | Nanoscale Adv., 2024, 6, 5773–5802
resulting in a good electrical conductivity of 1081 S m−1 and an
excellent EMI SE of 54 dB over the X-band frequency range of 8–
12.4 GHz.175 Liang et al. developed a three-dimensional foam
with systematic hollow spherical structures of reduced gra-
phene oxide and silver platelets (rGO/AgP).161 By using a freeze-
drying process, the foam composite accomplished a uniform
distribution of AgP and rGO, forming a network structure. The
nal nanocomposites containing highly stable segregated
structures were successfully fabricated by backlling the epoxy
monomer and curing agent. The 3D segregated structures of
AgP/rGO/EP nanocomposites containing 0.44 vol% rGO and
0.94 vol% AgP showed themaximum SET value of 58 dB in the X-
band frequency range of 8–12.4 GHz and electrical conductivity
of 45.3 S m−1 due to systematic percolation networks of the AgP/
rGO hollow spherical particles and the interfacial synergy
between hollow spherical particles and epoxy resin.161 Many
authors have reported segregated structures in the literature
that are used in the fabrication of EMI shielding materials
which are listed in Table 9.
3.9 Template structure

In the polymer composites, the addition of large ller loadings
of nanomaterials in the polymer matrix attenuates EM waves.
The addition of large ller loadings in the polymer matrix
resulted in the formation of agglomerates and the dense
Ti3C2Tx/GF/PDMS composite. Reprinted with permission. Copyright

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 10 The template-based structures for the fabrication of EMI shielding materials

Materials Template Conductivity (S m−1) SET (dB) Frequency (GHz) Ref.

10.69 wt% MXene (Ti3C2Tx)/PDMS 30 8.2–12.4 186
10.69 wt% Graphene/PDMS 15 8.2–12.4 186
10.69 wt% MXene/11.53 wt% Fe3O4/
graphene/PDMS

Graphene 80 8.2–12.4 186

10.69 wt% MXene/11.53 wt% Fe3O4/
graphene/PDMS

Graphene 77 26.5–40 186

1.2 wt% rGO/MXene/epoxy Al2O3 36 43.5 8.2–12.4 188
3.3 wt% rGO/MXene/epoxy Al2O3 387.1 55 8.2–12.4 188
12 wt% Graphene foam/hollow-Fe3O4/
polydimethylsiloxane

Nickel foam 70.37 8.2–12.4 189

2.76 wt% Fe3O4 chemically bonded
carbon nanotubes/reduced graphene
foams (RGF)/epoxy

RGF 7.3 × 10−5 36 8.2–12.4 190

2.76 wt% carbon nanotubes/reduced
graphene foams/epoxy

RGF 14 31 8.2–12.4 190

2.58 wt% PANI/0.83 wt% MWCNT/
1.20 wt% thermally annealed graphene/
epoxy

PANI 5210 42 8.2–12.4 191

1.5 wt% Fe3O4/1.2 wt% thermally
annealed graphene oxide/epoxy

Graphene 8.7 × 10−5 10 8.2–12.4 192

1.5 wt% Fe3O4/1.2 wt% thermally
annealed graphene/epoxy

Graphene 27.5 35 8.2–12.4 192
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stacking of polymers in the nanocomposite. In response to such
problems, introducing 3D porous template structures will
effectively overcome the agglomeration of nanomaterials. There
were major studies on template-based polymer composites and
the researchers used templates to create 3D porous structures.
Song et al. used a sacricial template approach to build 3D foam
structures with rGO and MXene.185 The template was produced
from an Al2O3 honeycomb plate. MXene self-assembly on rGH
resulted in honeycomb structural rGO-MXene (rGMH) with the
formation of percolated networks and excellent EMI shielding
properties. The honeycomb cell size of 0.5 mm contains 1.2 wt%
rGO and 3.3 wt% MXene/epoxy nanocomposite demonstrating
the electrical conductivity of 387.1 S m−1 and SET value of 55 dB
values185 (Fig. 13).

Recently, Shahzad et al. who studied renewable porous bio-
char and 2D MXene have sparked tremendous interest in high-
performance EMI shielding elds due to their particular
ordered structures and good electrical conductivity values.187 The
wood-based porous carbon from natural wood was used as
a template in this study. The composites containing 15 wt%
MXene/epoxy and 4.25 wt%MXene foam/epoxy were prepared by
direct blending and template methods corresponding to SET
values of 41 and 46 dB, respectively. Many authors have reported
template-based structures in the literature for the fabrication of
EMI shielding materials which are listed in Table 10.
4 Process-based strategies of
nanomaterials for the fabrication of
efficient EMI shielding materials

To develop EMI shielding materials, the homogeneous distri-
bution of nanomaterials in the polymeric matrix is
© 2024 The Author(s). Published by the Royal Society of Chemistry
a fundamental design strategy focused on delivering uniform
dispersion of the incorporated llers in the polymer. The
nanomaterials in the polymer matrix combined to create
a percolation network that relies on a ller loading of nano-
particles. Nevertheless, nanollers have various sizes and
multiple dimensions, and the ller loading of nanoparticles in
large quantities makes them vulnerable to agglomeration in the
polymer matrix, thereby signicantly affecting the composites'
performances.4 Themiscibility of nanoparticles may increase by
introducing an external force. Melt blending, solvent mixing,
and in situ polymerization are all approaches for achieving
a homogeneous structure. Melt blending is an economically
feasible, cost-effective, and realistic method in the polymer
industry. In this method, the polymer matrix was heated at
melting temperature rather than its solubility in conventional
solvents, preventing the solvent removal stage.4

The high-quality shear mixing method will ensure that the
llers are well dispersed in the molten polymer. Kumar et al.
used a continuous melt blending technique to achieve homo-
geneous dispersion of large ller loadings of MWNT within
a polypropylene (PP) polymeric matrix.11 Morphological char-
acteristics were analysed and conrm the good dispersion of
MWNT in the nanocomposites. The nanocomposite with an
MWNT loading of 2 wt% demonstrated an SET value of 5.9 dB,
which corresponds to 74.29% attenuation of incident EM wave
power over the X-band frequency range of 8–12.4 GHz. Many
authors have reported in the literature the melt blending
method used in the fabrication of EMI shielding materials lis-
ted in Table 10.

Solution mixing depends on a solvent technique, which
nely disperses the llers in the matrix due to the polymer's
lower viscosity. Because of the ller's limited solubility in the
solvent, certain processing steps such as intense stirring, high-
Nanoscale Adv., 2024, 6, 5773–5802 | 5787
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Table 11 Processing strategies used in the fabrication of efficient EMI shielding materials

Materials Method Conductivity (S m−1) SET (dB) Frequency (GHz) Ref.

Fabrics/10 wt% CNT and sodium alginate 20 Cycles of layer-by-layer assembly 36.6 21.5 8.2–12.4 195
Fabrics/10 wt% CNT and sodium alginate 20 Cycles of layer-by-layer assembly 36.6 20.8 12.4–18 195
PS/5 wt% MWCNT Nano-inltration 7.2 × 10−2 25 8.2–12.4 196
PS/5 wt% MWCNT/rGO/Fe3O4 Nano-inltration 0.014 22 8.2–12.4 196
PS/5 wt% MWCNT/rGO/MoS2 Nano-inltration 0.031 36 8.2–12.4 196
PLA/30 wt% PVDF/0.25 wt% CNT Kinetically controlled melt blending 1.06 × 10−2 <3.5 8.2–12.4 197
PLA/30 wt% PVDF/0.25 wt% CNT Kinetically controlled melt blending 1.06 × 10−2 <8 1–6 197
20 vol% PS/PMMA/2.7 vol% MWNT Intertube and interphase controlled melt

blending
90 29–20 8.2–12.4 198

PDMS/3 wt% MWNT Spin coating 40 13.5 8.2–12.4 199
PDMS/3 wt% MWNT Compression molding 88 7 8.2–12.4 199
50 wt% PC/PMMA/3 wt% MWNT Solution mixing 0.5 8–14 8–12 200
50 wt% PC/PMMA/3 wt% MWNT Melt blending 0.3 4.5–9 8–12 200
0.5 wt% E-f-GO/epoxy/carbon ber VARTM technique — 55–67 12.4–18 201
PVDF/30 wt% Ni The rotational orientation of ller — 20–35 26.5–40 202
7.5 wt% (graphene/MWNT)/PBO In situ polymerization 50.17 12.58 203
2 wt% Ionic liquid-MWNT + 5 wt% BaFe
in PC + 10 wt% PMMA

Melt blending 2.8 37 8–18 204

PET/PANI composite In situ chemical oxidation polymerization
method

80 23.95 8–12.4 205

35 wt% EVA/40 wt% CF/5 wt% OMMT/
20 wt% SCF

Ceramization 99 36 8–12.4 206

PS/12.6 vol% Cu Compression molding 2.95 × 106 100 0.1–18 207
PS/12.6 vol% Cu/0.4 vol% Ag Compression molding 3.5 × 106 110 0.1–18 207
PVDF/2 wt% MWNT Extrusion followed rolling 2.8 × 10−3 18–25 12–18 208
EMA/50 wt% EOC/15 wt% MWNT Solution mixing 0.89 33 8–12.4 209
60 wt% AEM/MPU/5 wt% SWNT Blending 4.27 × 10−2 23–27 2–8 210
ABS/1.5 wt% CNT/1.5 wt% CB Extrusion followed by vacuum drying 4.7 × 10−3 11 8–12.4 211
ABS/3 wt% CNT Extrusion followed by vacuum drying 1.27 × 10−3 17 8–12.4 211
40 wt% CNT/PLA Melt blending 3.2 50 8–12.4 212
40 wt% CNT/PLA 3D printing 1.1 30 8–12.4 212
48 wt% poly(L-lactide)/12 wt% poly(3-
caprolactone)/PCL/2 carbon nanotubes

Melt blending 0.012 17 8–12.4 213
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intensity ultrasonication, and surface modication are needed.
Ouyang et al. produced an intrinsically conducting polymer
composed of poly(3,4-ethylene dioxythiophene) (PEDOT) and
polystyrene sulfonate (PSS) as a conductive portion for the
development of highly effective exible EMI materials.193

PEDOT and PSS were mixed with an extremely stretchable,
miscible polyurethane (PU) solution to create composite lms
by drop-casting. The 0.15 mm thick lms exhibited a conduc-
tivity of 7.7 × 103 S m−1 and demonstrated a SET value of 62 dB
over the X-band frequency range of 8–12.4 GHz. In situ poly-
merization is a reasonably complex process in which the
dispersion of the ller is timed to correspond with the matrix's
polymerization. Zhang et al. generated a sequence of conductive
polymeric composites by polymerizing an 3-caprolactam
monomer in situ in the presence of GO nanosheets in a single
step.194 The reduction, renement, and distribution of GOs
occurred by polymerization, with no additional reducing agents
utilized. In the in situ polymerization process, epoxy-based
composites were commonly used. The addition of the nano-
particles in the composite helped create conductive networks
while also contributing to hysteresis degradation, resulting in
signicantly enhanced absorption of EM waves. It is believed
that by using various processes, a more efficient polymer
composite containing ller loading of nanoparticles would be
5788 | Nanoscale Adv., 2024, 6, 5773–5802
possible, which would be accomplished using processing
techniques as listed in Table 11.
5 Sustainable strategies of
nanomaterials for the fabrication of
efficient EMI shielding materials

A sustainable polymer is a plastic material that satises
consumer demands without harming the environment, health,
or economy. To accomplish this, scientists are focusing on
creating polymers that, as compared to non-sustainable alter-
natives, use renewable feedstocks, such as plants and crops for
manufacturing with a smaller carbon footprint and a facile end
life. Although sustainable polymers are a signicant rising
segment of the industry, they are derived from unsustainable
fossil materials and require adequate synthesis and processing.
A natural polymer, as a non-toxic, reusable, and renewable fuel,
may be directly carbonized to produce macroscopic materials
without the use of expensive precursors or complicated
processes, implying an efficient energy-saving path for EMI
shielding materials. As precursors, two prominent natural
products, cellulose and lignin, have received considerable
attention. Since graphene oxide can only be uniformly
© 2024 The Author(s). Published by the Royal Society of Chemistry
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distributed in water at lower concentrations, the resulting gra-
phene aerogels have low density, good mechanical strength,
and conductivity. In contrast to graphene oxide, Zeng et al.
discovered that lignin could form stable suspensions in a much
wider range of concentrations, resulting in honeycomb-like
foams with tunable densities through unidirectional freeze-
drying.214 As a result of their research, honeycomb-like lignin-
derived carbon (LC) foams doped with rGO were created using
unidirectional ice-templating, freeze-drying, and carbonization.
The interfaces between the LC and rGO and the aligned pores in
the 2 mm thick honeycomb-like foams contributed interfacial
polarization loss and numerous reections, resulting in
a collection of 31 dB over the X-band frequency range of 8–12.4
GHz. Because of their broad specic area and porous nature,
Wan et al. chose cellulose-derived carbon aerogels (CDCA) as
materials.215 Then, using a simple chemical precipitation
process, nanoneedles and nanoowers of magnetic a-FeOOH
were developed in situ on a CDCA substrate to increase the
contributions of magnetic losses and thus improve the EMI
shielding characteristics. The incorporation of a-FeOOH into
carbon aerogels exhibited an absorption-dominant mechanism,
which certainly reduced secondary radiation from EMI shields
as a prepared composite was a compelling option for designing
safety devices from EM radiation. Furthermore, a volume of
natural biomass rich in natural polymers, such as wood, straw,
pulp, our, cotton, and sugarcane, has been used as
a precursor, which has proven to be a potential candidate for
application as an EMI shielding material. Another area of
importance should be recovering materials from electrical and
electronic devices into the matrix and reinforcement for EMI
shielding applications leading to waste management and
sustainability. Rosa et al. worked on using e-waste as metal
llers to the polymer matrix. The polymer matrix was high
density polyethylene (HDPE) recovered from municipal solid
waste. The metal ller, mostly iron oxide, was separated from
printed circuit boards (PCB), and the EMI SE was observed to be
48.3 dB. Rahaman et al. investigated recycling and reusing
polyethylene (PE) from waste plastic materials to be used as
a packaging material for electronic devices. Carbon black was
used as the conducting ller to improve the shielding proper-
ties, and the composite showed an EMI SE value of 33 dB at
a thickness of 1 mm and an attenuation of 99.93%.216,217 Many
authors have reported sustainable nanocomposites for EMI
shielding purposes which are listed in Table 12.

6 Summary and perspective

Electromagnetic interference (EMI) has evolved as a result of rapid
advances in the sectors of electronics and communications,
offering a great opportunity for the development of efficient EMI
shielding materials. Owing to continuous exploratory efforts,
polymer composites comprising conductive, magnetic, and/or
dielectric materials as important constituents for preventing
electromagnetic interference (EMI) are reported. Several process-
ing techniques for the preparation of EMI shielding materials
were discussed in this review. The structural design of nanollers
is critical and challenging work in the fabrication of EMI shielding
5790 | Nanoscale Adv., 2024, 6, 5773–5802
materials, which integrates the functional ller with the polymer
matrix for superior EMI shielding performance. Firstly, the role of
the basic nanoller in the preparation of high-performance EMI
shielding composites was outlined, along with preparation tech-
niques and typical cases. Also, different-structured nanollers
used simultaneously during the fabrication process to improve
shielding performance were discussed. Secondly, the importance
of the fabrication process for developing EMI shielding materials
was summarized. In addition, different manufacturing strategies
for lightweight and ultra-thinmaterials were addressed in order to
be used as potential EMI shielding materials. Synthetic and
natural polymers have been processed into various derivatives
using facile synthesis processes that demonstrate signicant
promise for adequate preparations of EMI shielding materials.
Furthermore, simple, large-scale, and low-cost fabrication
methods for EMI shielding materials for efficient industrializa-
tion and emerging structures were explored, as should the
translation of corresponding shielding devices for potential
applications. Finally, EMI shielding material fabrication tech-
niques endow the EMI shields with unique properties, trans-
forming them into high-value-added EMI shielding materials.
Nomenclature
ABS
© 2024 The Au
Acrylonitrile-butadiene-styrene

AEM
 Ethylene acrylic elastomers

AIBN
 Azoisobutyronitrile

Ag
 Silver nanoparticles

Ag@HGM
 Silver nanoparticles on the surface of hollow

glass microspheres

BC
 Bacterial cellulose

BN
 Boron nitride

BNSF
 BaNd0.2Sm0.2Fe11.6O19
BRF
 Polypyrrole matrix encapsulated with BST,
RGO and Fe3O4
BST
 Barium strontium titanate

CB
 Carbon black

CCTO
 CaCu3Ti4O12
CDCA
 Cellulose-derived carbon aerogels

CF
 Carbon bre

CLF
 Carbonized loofah ber

CNF
 Cellulose nanober

CNT
 Carbon nanotubes

CPEGDA
 Crosslinked poly(ethylene glycol) diacrylate

CSA
 Camphor sulfonic acid

EM
 Electro-magnetic

EMA
 Ethylene-co-methyl acrylate

EMI
 Electro-magnetic interference

EMI SE
 Electro-magnetic interference shielding

effectiveness

EOC
 Ethylene octene copolymer

FAC
 Fly ash cenosphere

f-MWCNT
 Functionalized multiwalled carbon nanotubes

GFBT
 Graphene nanoplate/Fe3O4@BaTiO3 hybrid

GN
 Graphene nanosheets

GN-CN
 Graphene nanoplates-carbon nanotubes

GNP
 Graphene nanoplatelets
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HDPE
© 2024 The Autho
High density polyethylene

HGM
 Hollow glass microspheres

IL-MWCNT
 Ionic liquid-multiwalled carbon nanotubes

Lbl
 Layer-by-layer

LC
 Lignin-derived carbon

MA
 Maleic anhydride

MNP
 Metal nanoparticles

MPU
 Millable polyurethane

MWNT or
MWCNT
Multi-walled carbon nanotubes
NCF
 Nickel doped cobalt ferrites

NF
 Nonwoven fabric

Ni@CNT
 Carbon nanotube encapsulated nickel

nanowires

NR
 Natural rubber

NWF
 Non-woven fabrics

PAM
 Polyazomethine

PANI
 Polyaniline

PBAT
 Poly(butylene adipate-co-terephthalate)

PBO
 Poly(p-phenylene benzobisoxazole)

PC
 Polycarbonate

PCL
 Polycaprolactone

PDMS
 Polydimethylsiloxane

PEDOT
 Poly(3,4-ethylene dioxythiophene)

PEEK
 Polyether ether ketone

PET
 Polyethylene terephthalate

PET oxide
 Poly(ethylene oxide)

PHDDT
 Phosphorus-containing liquid crystalline co-

polyester

PI
 Power density of incident electromagnetic

waves

PLA
 Poly(lactic acid)

PLLA
 Poly(L-lactide)

PMMA
 Poly(methyl methacrylate)

PNC
 Polymer nanocomposites

POE
 Poly(ethylene-co-1-octene)

PP
 Polypropylene

PPy
 Polypyrrole

PPEK
 Poly(phthalazinone ether ketone)

PPS
 Poly(phenylene sulphide)

PR
 Power density of reected electromagnetic

waves

PS
 Polystyrene

PSS
 Polystyrene sulfonate

PT
 Power density of transmitted electromagnetic

waves

p-TSA
 para-Toluene sulphonic acid

PVA
 Polyvinyl alcohol

PVB
 Poly(vinyl butyral)

PVDF
 Polyvinylidene uoride

RG-CN
 Chemically reduced graphene oxide-carbon

nanotubes

rGH
 Honeycomb structural rGO

rGMH
 Honeycomb structural rGO-MXene

RGO
 Reduced graphene oxide

SBR
 Styrene-butadiene rubber

SCF
 Short carbon ber

SEA
 EMI shielding effectiveness due to absorption

loss
r(s). Published by the Royal Society of Chemistry
SER
 EMI shielding effectiveness due to reection
loss
SET
 Total EMI shielding effectiveness

SGM
 Solid glass microspheres

SSE
 Specic shielding effectiveness

SSF
 Stainless steel bre

Sub-SF
 Substituted strontium ferrite

SWNT
 Single-walled carbon nanotube

TAGA
 Thermally annealed graphene aerogel

TGO
 Thermally reduced graphene oxide

TGO-CN
 Thermally reduced graphene oxide-carbon

nanotubes

TPU
 Thermoplastic polyurethane

UHMWPE
 Ultrahigh-molecular-weight polyethylene

WPU
 Waterborne polyurethane

WTP
 Wastepaper
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